2015, 9: 1-23. doi: 10.3934/jmd.2015.9.1

Every flat surface is Birkhoff and Oseledets generic in almost every direction

1. 

Department of Mathematics, University of Utah, 155 S. 1400 E., Room 233, Salt Lake City, UT 84112, United States

2. 

Department of Mathematics, University of Chicago, Chicago, IL 60637

Received  November 2013 Revised  October 2014 Published  May 2015

We prove that the Birkhoff pointwise ergodic theorem and the Oseledets multiplicative ergodic theorem hold for every flat surface in almost every direction. The proofs rely on the strong law of large numbers, and on recent rigidity results for the action of the upper triangular subgroup of $SL(2,\mathbb R)$ on the moduli space of flat surfaces. Most of the results also use a theorem about continuity of splittings of the Kontsevich-Zorich cocycle recently proved by S. Filip.
Citation: Jon Chaika, Alex Eskin. Every flat surface is Birkhoff and Oseledets generic in almost every direction. Journal of Modern Dynamics, 2015, 9: 1-23. doi: 10.3934/jmd.2015.9.1
References:
[1]

J. Athreya, Quantitative recurrence and large deviations for Teichmuller geodesic flow, Geom. Dedicata, 119 (2006), 121-140. doi: 10.1007/s10711-006-9058-z.

[2]

A. Avila, A. Eskin and M. Moeller, Symplectic and isometric $SL(2,\mathbb R)$ invariant subbundles of the Hodge bundle, arXiv:1209.2854, (2012).

[3]

Y. Benoist and J.-F. Quint, Stationary measures and invariant subsets of homogeneous spaces (III), Ann. of Math.(2), 178 (2013), 1017-1059. doi: 10.4007/annals.2013.178.3.5.

[4]

A. Bufetov, Limit theorems for translation flows, Ann. of Math. (2), 179 (2014), 431-499. doi: 10.4007/annals.2014.179.2.2.

[5]

V. Delecroix, P. Hubert and S. Leliévre, Diffusion for the periodic wind-tree model,, , (). 

[6]

P. Ehrenfest and T. Ehrenfest, Begriffliche Grundlagen der statistischen Auffassung in der Mechanik, (in German) Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S, 1912; English translation: The Conceptual Foundations of the Statistical Approach in Mechanics, Translated by M. J. Moravcsik, Cornell University Press, Itacha, NY, 1959.

[7]

A. Eskin and H. Masur, Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, 21 (2001), 443-478. doi: 10.1017/S0143385701001225.

[8]

A. Eskin, G. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141. doi: 10.2307/120984.

[9]

A. Eskin and C. Matheus, Semisimplicity of the Lyapunov spectrum for irreducible cocycles,, , (). 

[10]

A. Eskin and M. Mirzakhani, Invariant and stationary measures for the $SL(2,\mathbbR)$ action on moduli space, arXiv:1302.3320, (2014).

[11]

A. Eskin, M. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the $SL(2,\mathbbR)$ action on moduli space, arXiv:1305.3015, (2014).

[12]

S. Filip, Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, arXiv:1307.7314, (2014).

[13]

G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2), 155 (2002), 1-103. doi: 10.2307/3062150.

[14]

G. Forni, Sobolev regularity of solutions of the cohomological equation, arXiv:0707.0940, (2007).

[15]

K. Frączek and P. Hubert, Recurrence and non-ergodicity,, preprint., (). 

[16]

K. Frączek and C. Ulcigrai, Non-ergodic $\mathbbZ$ periodic billiards and infinite translation surfaces, Inventiones mathematicae, 197 (2014), 241-298. doi: 10.1007/s00222-013-0482-z.

[17]

A. Furman, On the multiplicative ergodic theorem for uniquely ergodic systems, Ann. Inst. H. Poincaré Probab. Statist., 33 (1997), 797-815. doi: 10.1016/S0246-0203(97)80113-6.

[18]

I. Ya. Gol'dsheĭd and G. A. Margulis, Lyapunov indices of a product of random matrices, Russian Math. Surveys, 44 (1989), 11-71. doi: 10.1070/RM1989v044n05ABEH002214.

[19]

J. Hardy and J. Weber, Diffusion in a periodic wind-tree model, J. Math. Phys., 21 (1980), 1802-1808. doi: 10.1063/1.524633.

[20]

D. Kleinbock and B. Weiss, Bounded geodesics in moduli space, Int. Math. Res. Not., 30 (2004), 1551-1560. doi: 10.1155/S1073792804133412.

[21]

S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc., 18 (2005), 823-872. doi: 10.1090/S0894-0347-05-00490-X.

[22]

S. Marmi and J.-C. Yoccoz, Hölder regularity of the solutions of the cohomological equation for Roth type interval exchange maps,, , (). 

[23]

H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2), 115 (1982), 169-200. doi: 10.2307/1971341.

[24]

W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242. doi: 10.2307/1971391.

[25]

R. Zimmer, Ergodic Theory and Semisimple Groups, Monographs in Mathematics, 81, Birkhäuser Verlag, Basel, 1984. doi: 10.1007/978-1-4684-9488-4.

[26]

A. Zorich, Deviation for interval exchange transformations, Erogodic Theory Dynam. Systems, 17 (1997), 1477-1499. doi: 10.1017/S0143385797086215.

[27]

A. Zorich, Flat Surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006, 437-583. doi: 10.1007/978-3-540-31347-2_13.

show all references

References:
[1]

J. Athreya, Quantitative recurrence and large deviations for Teichmuller geodesic flow, Geom. Dedicata, 119 (2006), 121-140. doi: 10.1007/s10711-006-9058-z.

[2]

A. Avila, A. Eskin and M. Moeller, Symplectic and isometric $SL(2,\mathbb R)$ invariant subbundles of the Hodge bundle, arXiv:1209.2854, (2012).

[3]

Y. Benoist and J.-F. Quint, Stationary measures and invariant subsets of homogeneous spaces (III), Ann. of Math.(2), 178 (2013), 1017-1059. doi: 10.4007/annals.2013.178.3.5.

[4]

A. Bufetov, Limit theorems for translation flows, Ann. of Math. (2), 179 (2014), 431-499. doi: 10.4007/annals.2014.179.2.2.

[5]

V. Delecroix, P. Hubert and S. Leliévre, Diffusion for the periodic wind-tree model,, , (). 

[6]

P. Ehrenfest and T. Ehrenfest, Begriffliche Grundlagen der statistischen Auffassung in der Mechanik, (in German) Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S, 1912; English translation: The Conceptual Foundations of the Statistical Approach in Mechanics, Translated by M. J. Moravcsik, Cornell University Press, Itacha, NY, 1959.

[7]

A. Eskin and H. Masur, Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, 21 (2001), 443-478. doi: 10.1017/S0143385701001225.

[8]

A. Eskin, G. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141. doi: 10.2307/120984.

[9]

A. Eskin and C. Matheus, Semisimplicity of the Lyapunov spectrum for irreducible cocycles,, , (). 

[10]

A. Eskin and M. Mirzakhani, Invariant and stationary measures for the $SL(2,\mathbbR)$ action on moduli space, arXiv:1302.3320, (2014).

[11]

A. Eskin, M. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the $SL(2,\mathbbR)$ action on moduli space, arXiv:1305.3015, (2014).

[12]

S. Filip, Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, arXiv:1307.7314, (2014).

[13]

G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2), 155 (2002), 1-103. doi: 10.2307/3062150.

[14]

G. Forni, Sobolev regularity of solutions of the cohomological equation, arXiv:0707.0940, (2007).

[15]

K. Frączek and P. Hubert, Recurrence and non-ergodicity,, preprint., (). 

[16]

K. Frączek and C. Ulcigrai, Non-ergodic $\mathbbZ$ periodic billiards and infinite translation surfaces, Inventiones mathematicae, 197 (2014), 241-298. doi: 10.1007/s00222-013-0482-z.

[17]

A. Furman, On the multiplicative ergodic theorem for uniquely ergodic systems, Ann. Inst. H. Poincaré Probab. Statist., 33 (1997), 797-815. doi: 10.1016/S0246-0203(97)80113-6.

[18]

I. Ya. Gol'dsheĭd and G. A. Margulis, Lyapunov indices of a product of random matrices, Russian Math. Surveys, 44 (1989), 11-71. doi: 10.1070/RM1989v044n05ABEH002214.

[19]

J. Hardy and J. Weber, Diffusion in a periodic wind-tree model, J. Math. Phys., 21 (1980), 1802-1808. doi: 10.1063/1.524633.

[20]

D. Kleinbock and B. Weiss, Bounded geodesics in moduli space, Int. Math. Res. Not., 30 (2004), 1551-1560. doi: 10.1155/S1073792804133412.

[21]

S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc., 18 (2005), 823-872. doi: 10.1090/S0894-0347-05-00490-X.

[22]

S. Marmi and J.-C. Yoccoz, Hölder regularity of the solutions of the cohomological equation for Roth type interval exchange maps,, , (). 

[23]

H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2), 115 (1982), 169-200. doi: 10.2307/1971341.

[24]

W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242. doi: 10.2307/1971391.

[25]

R. Zimmer, Ergodic Theory and Semisimple Groups, Monographs in Mathematics, 81, Birkhäuser Verlag, Basel, 1984. doi: 10.1007/978-1-4684-9488-4.

[26]

A. Zorich, Deviation for interval exchange transformations, Erogodic Theory Dynam. Systems, 17 (1997), 1477-1499. doi: 10.1017/S0143385797086215.

[27]

A. Zorich, Flat Surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006, 437-583. doi: 10.1007/978-3-540-31347-2_13.

[1]

Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34

[2]

Asaf Katz. On mixing and sparse ergodic theorems. Journal of Modern Dynamics, 2021, 17: 1-32. doi: 10.3934/jmd.2021001

[3]

Kathryn Lindsey, Rodrigo Treviño. Infinite type flat surface models of ergodic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5509-5553. doi: 10.3934/dcds.2016043

[4]

Tanja Eisner, Jakub Konieczny. Automatic sequences as good weights for ergodic theorems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4087-4115. doi: 10.3934/dcds.2018178

[5]

Yuri Kifer. Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2687-2716. doi: 10.3934/dcds.2018113

[6]

Zuohuan Zheng, Jing Xia, Zhiming Zheng. Necessary and sufficient conditions for semi-uniform ergodic theorems and their applications. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 409-417. doi: 10.3934/dcds.2006.14.409

[7]

Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873

[8]

David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477

[9]

Yves Derriennic. Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the "central limit theorem''. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 143-158. doi: 10.3934/dcds.2006.15.143

[10]

François Ledrappier, Omri Sarig. Fluctuations of ergodic sums for horocycle flows on $\Z^d$--covers of finite volume surfaces. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 247-325. doi: 10.3934/dcds.2008.22.247

[11]

Dmitry Jakobson. On quantum limits on flat tori. Electronic Research Announcements, 1995, 1: 80-86.

[12]

Oliver Jenkinson. Ergodic Optimization. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 197-224. doi: 10.3934/dcds.2006.15.197

[13]

Hong-Kun Zhang. Free path of billiards with flat points. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445

[14]

Graziano Crasta, Stefano Finzi Vita. An existence result for the sandpile problem on flat tables with walls. Networks and Heterogeneous Media, 2008, 3 (4) : 815-830. doi: 10.3934/nhm.2008.3.815

[15]

Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099

[16]

Chenxi Wu. The relative cohomology of abelian covers of the flat pillowcase. Journal of Modern Dynamics, 2015, 9: 123-140. doi: 10.3934/jmd.2015.9.123

[17]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[18]

Roy Adler, Bruce Kitchens, Michael Shub. Stably ergodic skew products. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 349-350. doi: 10.3934/dcds.1996.2.349

[19]

Alexandre I. Danilenko, Mariusz Lemańczyk. Spectral multiplicities for ergodic flows. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4271-4289. doi: 10.3934/dcds.2013.33.4271

[20]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (117)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]