\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The relative cohomology of abelian covers of the flat pillowcase

Abstract / Introduction Related Papers Cited by
  • We calculate the action of the group of affine diffeomorphisms on the relative cohomology of pair $(M,\Sigma)$, where $M$ is a square-tiled surface that is a normal abelian cover of the flat pillowcase. As an application, we answer a question raised by Smillie and Weiss.
    Mathematics Subject Classification: Primary: 37D40; Secondary: 37E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    I. I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2), 172 (2010), 139-185.doi: 10.4007/annals.2010.172.139.

    [2]

    H. S. M. Coxeter, Regular Polytopes, Third edition, Dover Publications, Inc., New York, 1973.

    [3]

    L. E. Dickson, Algebraic Theories, Dover Publications, Inc., New York, 1959.

    [4]

    P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math., 63 (1986), 5-89.

    [5]

    A. Eskin, M. Konstevich and A. Zorich, Lyapunov spectrum of square-tiled cyclic covers, arXiv:1007.5330, 2011.

    [6]

    G. Forni and C. Matheus, An example of a Teichmüller disk in genus 4 with degenerate Kontsevich-Zorich spectrum, arXiv:0810.0023, 2008.

    [7]

    G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers, J. Mod. Dyn., 5 (2011), 285-318.doi: 10.3934/jmd.2011.5.285.

    [8]

    G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle, in Handbook of Dynamical Systems (eds. B. Hasselblatt and A. Katok), 1B, Elsevier B. V., Amsterdam, Elsevier, 2006.

    [9]

    A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.

    [10]

    F. Herrlich and G. Schmithüsen, An extraordinary origami curve, Math. Nachr., 281 (2008), 219-237.doi: 10.1002/mana.200510597.

    [11]

    P. Hubert and G. Schmithüsen, Action of the affine group on cyclic covers, in preparation.

    [12]

    C. T. McMullen, Braid groups and Hodge theory, Math. Ann., 355 (2013), 893-946.doi: 10.1007/s00208-012-0804-2.

    [13]

    C. Matheus and J.-C. Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn., 4 (2010), 453-486.doi: 10.3934/jmd.2010.4.453.

    [14]

    G. Schmithüsen, An algorithm for finding the Veech group of an origami, Experimental Mathematics, 13 (2004), 459-472.

    [15]

    J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977.

    [16]

    J. Smillie and B. Weiss, Examples of horocycle-invariant measures on the moduli space of translation surfaces.

    [17]

    W. P. Thurston, Shapes of polyhedra and triangulations of the sphere, in The Epstein Birthday Schrift, Geometry and Topology Monographs, 1, Geom. Topol. Publ., Coventry, 1998, 511-549.doi: 10.2140/gtm.1998.1.511.

    [18]

    A. Wright, Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces, J. Mod. Dyn., 6 (2012), 405-426.doi: 10.3934/jmd.2012.6.405.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(104) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return