-
Previous Article
On the existence of periodic orbits for magnetic systems on the two-sphere
- JMD Home
- This Volume
-
Next Article
Partial hyperbolicity and foliations in $\mathbb{T}^3$
The relative cohomology of abelian covers of the flat pillowcase
1. | Department of Mathematics, 310 Malott Hall, Cornell University, Ithaca, NY 14853, United States |
References:
[1] |
I. I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents,, Ann. of Math. (2), 172 (2010), 139.
doi: 10.4007/annals.2010.172.139. |
[2] |
H. S. M. Coxeter, Regular Polytopes,, Third edition, (1973).
|
[3] |
L. E. Dickson, Algebraic Theories,, Dover Publications, (1959).
|
[4] |
P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy,, Inst. Hautes Études Sci. Publ. Math., 63 (1986), 5.
|
[5] |
A. Eskin, M. Konstevich and A. Zorich, Lyapunov spectrum of square-tiled cyclic covers,, , (2011). Google Scholar |
[6] |
G. Forni and C. Matheus, An example of a Teichmüller disk in genus 4 with degenerate Kontsevich-Zorich spectrum,, , (2008). Google Scholar |
[7] |
G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 285.
doi: 10.3934/jmd.2011.5.285. |
[8] |
G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle,, in Handbook of Dynamical Systems (eds. B. Hasselblatt and A. Katok), (2006). Google Scholar |
[9] |
A. Hatcher, Algebraic Topology,, Cambridge University Press, (2002).
|
[10] |
F. Herrlich and G. Schmithüsen, An extraordinary origami curve,, Math. Nachr., 281 (2008), 219.
doi: 10.1002/mana.200510597. |
[11] |
P. Hubert and G. Schmithüsen, Action of the affine group on cyclic covers,, in preparation., (). Google Scholar |
[12] |
C. T. McMullen, Braid groups and Hodge theory,, Math. Ann., 355 (2013), 893.
doi: 10.1007/s00208-012-0804-2. |
[13] |
C. Matheus and J.-C. Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis,, J. Mod. Dyn., 4 (2010), 453.
doi: 10.3934/jmd.2010.4.453. |
[14] |
G. Schmithüsen, An algorithm for finding the Veech group of an origami,, Experimental Mathematics, 13 (2004), 459. Google Scholar |
[15] |
J.-P. Serre, Linear Representations of Finite Groups,, Graduate Texts in Mathematics, (1977).
|
[16] |
J. Smillie and B. Weiss, Examples of horocycle-invariant measures on the moduli space of translation, surfaces., (). Google Scholar |
[17] |
W. P. Thurston, Shapes of polyhedra and triangulations of the sphere,, in The Epstein Birthday Schrift, (1998), 511.
doi: 10.2140/gtm.1998.1.511. |
[18] |
A. Wright, Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces,, J. Mod. Dyn., 6 (2012), 405.
doi: 10.3934/jmd.2012.6.405. |
show all references
References:
[1] |
I. I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents,, Ann. of Math. (2), 172 (2010), 139.
doi: 10.4007/annals.2010.172.139. |
[2] |
H. S. M. Coxeter, Regular Polytopes,, Third edition, (1973).
|
[3] |
L. E. Dickson, Algebraic Theories,, Dover Publications, (1959).
|
[4] |
P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy,, Inst. Hautes Études Sci. Publ. Math., 63 (1986), 5.
|
[5] |
A. Eskin, M. Konstevich and A. Zorich, Lyapunov spectrum of square-tiled cyclic covers,, , (2011). Google Scholar |
[6] |
G. Forni and C. Matheus, An example of a Teichmüller disk in genus 4 with degenerate Kontsevich-Zorich spectrum,, , (2008). Google Scholar |
[7] |
G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 285.
doi: 10.3934/jmd.2011.5.285. |
[8] |
G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle,, in Handbook of Dynamical Systems (eds. B. Hasselblatt and A. Katok), (2006). Google Scholar |
[9] |
A. Hatcher, Algebraic Topology,, Cambridge University Press, (2002).
|
[10] |
F. Herrlich and G. Schmithüsen, An extraordinary origami curve,, Math. Nachr., 281 (2008), 219.
doi: 10.1002/mana.200510597. |
[11] |
P. Hubert and G. Schmithüsen, Action of the affine group on cyclic covers,, in preparation., (). Google Scholar |
[12] |
C. T. McMullen, Braid groups and Hodge theory,, Math. Ann., 355 (2013), 893.
doi: 10.1007/s00208-012-0804-2. |
[13] |
C. Matheus and J.-C. Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis,, J. Mod. Dyn., 4 (2010), 453.
doi: 10.3934/jmd.2010.4.453. |
[14] |
G. Schmithüsen, An algorithm for finding the Veech group of an origami,, Experimental Mathematics, 13 (2004), 459. Google Scholar |
[15] |
J.-P. Serre, Linear Representations of Finite Groups,, Graduate Texts in Mathematics, (1977).
|
[16] |
J. Smillie and B. Weiss, Examples of horocycle-invariant measures on the moduli space of translation, surfaces., (). Google Scholar |
[17] |
W. P. Thurston, Shapes of polyhedra and triangulations of the sphere,, in The Epstein Birthday Schrift, (1998), 511.
doi: 10.2140/gtm.1998.1.511. |
[18] |
A. Wright, Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces,, J. Mod. Dyn., 6 (2012), 405.
doi: 10.3934/jmd.2012.6.405. |
[1] |
Alex Wright. Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces. Journal of Modern Dynamics, 2012, 6 (3) : 405-426. doi: 10.3934/jmd.2012.6.405 |
[2] |
Giovanni Forni, Carlos Matheus, Anton Zorich. Square-tiled cyclic covers. Journal of Modern Dynamics, 2011, 5 (2) : 285-318. doi: 10.3934/jmd.2011.5.285 |
[3] |
Alex Eskin, Maxim Kontsevich, Anton Zorich. Lyapunov spectrum of square-tiled cyclic covers. Journal of Modern Dynamics, 2011, 5 (2) : 319-353. doi: 10.3934/jmd.2011.5.319 |
[4] |
Sébastien Ferenczi, Pascal Hubert. Rigidity of square-tiled interval exchange transformations. Journal of Modern Dynamics, 2019, 14: 153-177. doi: 10.3934/jmd.2019006 |
[5] |
Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135 |
[6] |
Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393 |
[7] |
Martin Möller. Shimura and Teichmüller curves. Journal of Modern Dynamics, 2011, 5 (1) : 1-32. doi: 10.3934/jmd.2011.5.1 |
[8] |
Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271 |
[9] |
Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations. Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139 |
[10] |
Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489 |
[11] |
Fei Yu, Kang Zuo. Weierstrass filtration on Teichmüller curves and Lyapunov exponents. Journal of Modern Dynamics, 2013, 7 (2) : 209-237. doi: 10.3934/jmd.2013.7.209 |
[12] |
Guizhen Cui, Yunping Jiang, Anthony Quas. Scaling functions and Gibbs measures and Teichmüller spaces of circle endomorphisms. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 535-552. doi: 10.3934/dcds.1999.5.535 |
[13] |
Chi Po Choi, Xianfeng Gu, Lok Ming Lui. Subdivision connectivity remeshing via Teichmüller extremal map. Inverse Problems & Imaging, 2017, 11 (5) : 825-855. doi: 10.3934/ipi.2017039 |
[14] |
Matteo Costantini, André Kappes. The equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve. Journal of Modern Dynamics, 2017, 11: 17-41. doi: 10.3934/jmd.2017002 |
[15] |
Anna Lenzhen, Babak Modami, Kasra Rafi. Teichmüller geodesics with $ d$-dimensional limit sets. Journal of Modern Dynamics, 2018, 12: 261-283. doi: 10.3934/jmd.2018010 |
[16] |
Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485 |
[17] |
W. Patrick Hooper. An infinite surface with the lattice property Ⅱ: Dynamics of pseudo-Anosovs. Journal of Modern Dynamics, 2019, 14: 243-276. doi: 10.3934/jmd.2019009 |
[18] |
Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209 |
[19] |
José A. Conejero, Alfredo Peris. Chaotic translation semigroups. Conference Publications, 2007, 2007 (Special) : 269-276. doi: 10.3934/proc.2007.2007.269 |
[20] |
Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004 |
2018 Impact Factor: 0.295
Tools
Metrics
Other articles
by authors
[Back to Top]