-
Previous Article
Ergodicity and topological entropy of geodesic flows on surfaces
- JMD Home
- This Volume
-
Next Article
The relative cohomology of abelian covers of the flat pillowcase
On the existence of periodic orbits for magnetic systems on the two-sphere
1. | Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, D-48149 Münster, Germany, Germany |
References:
[1] |
A. Abbondandolo, L. Macarini and G. P. Paternain, On the existence of three closed magnetic geodesics for subcritical energies,, Comment. Math. Helv., 90 (2015), 155.
doi: 10.4171/CMH/350. |
[2] |
A. Abbondandolo, L. Macarini, M. Mazzucchelli and G. P. Paternain, Infinitely many periodic orbits of exact magnetic flows on surfaces for almost every subcritical energy level,, preprint, (2014). Google Scholar |
[3] |
V. I. Arnol'd, Some remarks on flows of line elements and frames,, Dokl. Akad. Nauk SSSR, 138 (1961), 255.
|
[4] |
L. Asselle and G. Benedetti, Periodic orbits of magnetic flows for weakly exact unbounded forms and for spherical manifolds,, preprint, (2014). Google Scholar |
[5] |
L. Asselle and G. Benedetti, Infinitely many periodic orbits of non-exact oscillating magnetic fields on surfaces with genus at least two for almost every low energy level,, to appear in Calc. Var. Partial Differential Equations, (2015).
doi: 10.1007/s00526-015-0834-1. |
[6] |
K. Cieliebak, U. Frauenfelder and G. P. Paternain, Symplectic topology of Mañé's critical values,, Geom. Topol., 14 (2010), 1765.
doi: 10.2140/gt.2010.14.1765. |
[7] |
G. Contreras, The Palais-Smale condition on contact type energy levels for convex Lagrangian systems,, Calc. Var. Partial Differential Equations, 27 (2006), 321.
doi: 10.1007/s00526-005-0368-z. |
[8] |
A. Floer, H. Hofer and D. Salamon, Transversality in elliptic Morse theory for the symplectic action,, Duke Math. J., 80 (1995), 251.
doi: 10.1215/S0012-7094-95-08010-7. |
[9] |
U. Frauenfelder, V. L. Ginzburg and F. Schlenk, Energy capacity inequalities via an action selector,, in Geometry, (2005), 129.
doi: 10.1090/conm/387/07239. |
[10] |
U. Frauenfelder and F. Schlenk, Hamiltonian dynamics on convex symplectic manifolds,, Israel J. Math., 159 (2007), 1.
doi: 10.1007/s11856-007-0037-3. |
[11] |
V. L. Ginzburg, New generalizations of Poincaré's geometric theorem,, Funktsional. Anal. i Prilozhen., 21 (1987), 16.
|
[12] |
V. L. Ginzburg and B. Z. Gürel, Relative Hofer-Zehnder capacity and periodic orbits in twisted cotangent bundles,, Duke Math. J., 123 (2004), 1.
doi: 10.1215/S0012-7094-04-12311-5. |
[13] |
H. Hofer and C. Viterbo, The Weinstein conjecture in the presence of holomorphic spheres,, Comm. Pure Appl. Math., 45 (1992), 583.
doi: 10.1002/cpa.3160450504. |
[14] |
H. Hofer and E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo,, Invent. Math., 90 (1987), 1.
doi: 10.1007/BF01389030. |
[15] |
H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics,, Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks], (1994).
doi: 10.1007/978-3-0348-8540-9. |
[16] |
K. Irie, Hofer-Zehnder capacity and a Hamiltonian circle action with noncontractible orbits,, preprint, (2011). Google Scholar |
[17] |
K. Irie, Hofer-Zehnder capacity of unit disk cotangent bundles and the loop product,, J. Eur. Math. Soc. (JEMS), 16 (2014), 2477.
doi: 10.4171/JEMS/491. |
[18] |
F. Lalonde and D. McDuff, $J$-curves and the classification of rational and ruled symplectic $4$-manifolds,, in Contact and Symplectic Geometry (Cambridge, (1994), 3.
|
[19] |
G. Liu and G. Tian, Weinstein conjecture and GW-invariants,, Commun. Contemp. Math., 2 (2000), 405.
doi: 10.1142/S0219199700000256. |
[20] |
G. Lu, The Weinstein conjecture on some symplectic manifolds containing the holomorphic spheres,, Kyushu J. Math., 52 (1998), 331.
doi: 10.2206/kyushujm.52.331. |
[21] |
G. Lu, Gromov-Witten invariants and pseudo symplectic capacities,, Israel J. Math., 156 (2006), 1.
doi: 10.1007/BF02773823. |
[22] |
L. Macarini, Hofer-Zehnder capacity and Hamiltonian circle actions,, Commun. Contemp. Math., 6 (2004), 913.
doi: 10.1142/S0219199704001550. |
[23] |
L. Macarini and F. Schlenk, A refinement of the Hofer-Zehnder theorem on the existence of closed characteristics near a hypersurface,, Bull. London Math. Soc., 37 (2005), 297.
doi: 10.1112/S0024609304003923. |
[24] |
D. McDuff, The structure of rational and ruled symplectic $4$-manifolds,, J. Amer. Math. Soc., 3 (1990), 679.
doi: 10.2307/1990934. |
[25] |
D. McDuff and D. Salamon, $J$-holomorphic Curves and Symplectic Topology,, Amer. Math. Soc. Colloq. Publ., (2004).
|
[26] |
D. McDuff and J. Slimowitz, Hofer-Zehnder capacity and length minimizing Hamiltonian paths,, Geom. Topol., 5 (2001), 799.
doi: 10.2140/gt.2001.5.799. |
[27] |
W. J. Merry, Closed orbits of a charge in a weakly exact magnetic field,, Pacific J. Math., 247 (2010), 189.
doi: 10.2140/pjm.2010.247.189. |
[28] |
S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory,, Uspekhi Mat. Nauk, 37 (1982), 3.
|
[29] |
S. P. Novikov and I. Shmel'tser, Periodic solutions of Kirchhoff equations for the free motion of a rigid body in a fluid and the extended Lyusternik-Shnirel'man-Morse theory. I,, Funktsional. Anal. i Prilozhen., 15 (1981), 54.
|
[30] |
L. Polterovich, Geometry on the group of Hamiltonian diffeomorphisms,, in Proceedings of the International Congress of Mathematicians, (1998), 401.
|
[31] |
F. Schlenk, Applications of Hofer's geometry to Hamiltonian dynamics,, Comment. Math. Helv., 81 (2006), 105.
doi: 10.4171/CMH/45. |
[32] |
M. Struwe, Existence of periodic solutions of Hamiltonian systems on almost every energy surface,, Bol. Soc. Brasil. Mat. (N.S.), 20 (1990), 49.
doi: 10.1007/BF02585433. |
[33] |
I. A. Taĭmanov, Closed extremals on two-dimensional manifolds,, Uspekhi Mat. Nauk, 47 (1992), 143.
doi: 10.1070/RM1992v047n02ABEH000880. |
show all references
References:
[1] |
A. Abbondandolo, L. Macarini and G. P. Paternain, On the existence of three closed magnetic geodesics for subcritical energies,, Comment. Math. Helv., 90 (2015), 155.
doi: 10.4171/CMH/350. |
[2] |
A. Abbondandolo, L. Macarini, M. Mazzucchelli and G. P. Paternain, Infinitely many periodic orbits of exact magnetic flows on surfaces for almost every subcritical energy level,, preprint, (2014). Google Scholar |
[3] |
V. I. Arnol'd, Some remarks on flows of line elements and frames,, Dokl. Akad. Nauk SSSR, 138 (1961), 255.
|
[4] |
L. Asselle and G. Benedetti, Periodic orbits of magnetic flows for weakly exact unbounded forms and for spherical manifolds,, preprint, (2014). Google Scholar |
[5] |
L. Asselle and G. Benedetti, Infinitely many periodic orbits of non-exact oscillating magnetic fields on surfaces with genus at least two for almost every low energy level,, to appear in Calc. Var. Partial Differential Equations, (2015).
doi: 10.1007/s00526-015-0834-1. |
[6] |
K. Cieliebak, U. Frauenfelder and G. P. Paternain, Symplectic topology of Mañé's critical values,, Geom. Topol., 14 (2010), 1765.
doi: 10.2140/gt.2010.14.1765. |
[7] |
G. Contreras, The Palais-Smale condition on contact type energy levels for convex Lagrangian systems,, Calc. Var. Partial Differential Equations, 27 (2006), 321.
doi: 10.1007/s00526-005-0368-z. |
[8] |
A. Floer, H. Hofer and D. Salamon, Transversality in elliptic Morse theory for the symplectic action,, Duke Math. J., 80 (1995), 251.
doi: 10.1215/S0012-7094-95-08010-7. |
[9] |
U. Frauenfelder, V. L. Ginzburg and F. Schlenk, Energy capacity inequalities via an action selector,, in Geometry, (2005), 129.
doi: 10.1090/conm/387/07239. |
[10] |
U. Frauenfelder and F. Schlenk, Hamiltonian dynamics on convex symplectic manifolds,, Israel J. Math., 159 (2007), 1.
doi: 10.1007/s11856-007-0037-3. |
[11] |
V. L. Ginzburg, New generalizations of Poincaré's geometric theorem,, Funktsional. Anal. i Prilozhen., 21 (1987), 16.
|
[12] |
V. L. Ginzburg and B. Z. Gürel, Relative Hofer-Zehnder capacity and periodic orbits in twisted cotangent bundles,, Duke Math. J., 123 (2004), 1.
doi: 10.1215/S0012-7094-04-12311-5. |
[13] |
H. Hofer and C. Viterbo, The Weinstein conjecture in the presence of holomorphic spheres,, Comm. Pure Appl. Math., 45 (1992), 583.
doi: 10.1002/cpa.3160450504. |
[14] |
H. Hofer and E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo,, Invent. Math., 90 (1987), 1.
doi: 10.1007/BF01389030. |
[15] |
H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics,, Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks], (1994).
doi: 10.1007/978-3-0348-8540-9. |
[16] |
K. Irie, Hofer-Zehnder capacity and a Hamiltonian circle action with noncontractible orbits,, preprint, (2011). Google Scholar |
[17] |
K. Irie, Hofer-Zehnder capacity of unit disk cotangent bundles and the loop product,, J. Eur. Math. Soc. (JEMS), 16 (2014), 2477.
doi: 10.4171/JEMS/491. |
[18] |
F. Lalonde and D. McDuff, $J$-curves and the classification of rational and ruled symplectic $4$-manifolds,, in Contact and Symplectic Geometry (Cambridge, (1994), 3.
|
[19] |
G. Liu and G. Tian, Weinstein conjecture and GW-invariants,, Commun. Contemp. Math., 2 (2000), 405.
doi: 10.1142/S0219199700000256. |
[20] |
G. Lu, The Weinstein conjecture on some symplectic manifolds containing the holomorphic spheres,, Kyushu J. Math., 52 (1998), 331.
doi: 10.2206/kyushujm.52.331. |
[21] |
G. Lu, Gromov-Witten invariants and pseudo symplectic capacities,, Israel J. Math., 156 (2006), 1.
doi: 10.1007/BF02773823. |
[22] |
L. Macarini, Hofer-Zehnder capacity and Hamiltonian circle actions,, Commun. Contemp. Math., 6 (2004), 913.
doi: 10.1142/S0219199704001550. |
[23] |
L. Macarini and F. Schlenk, A refinement of the Hofer-Zehnder theorem on the existence of closed characteristics near a hypersurface,, Bull. London Math. Soc., 37 (2005), 297.
doi: 10.1112/S0024609304003923. |
[24] |
D. McDuff, The structure of rational and ruled symplectic $4$-manifolds,, J. Amer. Math. Soc., 3 (1990), 679.
doi: 10.2307/1990934. |
[25] |
D. McDuff and D. Salamon, $J$-holomorphic Curves and Symplectic Topology,, Amer. Math. Soc. Colloq. Publ., (2004).
|
[26] |
D. McDuff and J. Slimowitz, Hofer-Zehnder capacity and length minimizing Hamiltonian paths,, Geom. Topol., 5 (2001), 799.
doi: 10.2140/gt.2001.5.799. |
[27] |
W. J. Merry, Closed orbits of a charge in a weakly exact magnetic field,, Pacific J. Math., 247 (2010), 189.
doi: 10.2140/pjm.2010.247.189. |
[28] |
S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory,, Uspekhi Mat. Nauk, 37 (1982), 3.
|
[29] |
S. P. Novikov and I. Shmel'tser, Periodic solutions of Kirchhoff equations for the free motion of a rigid body in a fluid and the extended Lyusternik-Shnirel'man-Morse theory. I,, Funktsional. Anal. i Prilozhen., 15 (1981), 54.
|
[30] |
L. Polterovich, Geometry on the group of Hamiltonian diffeomorphisms,, in Proceedings of the International Congress of Mathematicians, (1998), 401.
|
[31] |
F. Schlenk, Applications of Hofer's geometry to Hamiltonian dynamics,, Comment. Math. Helv., 81 (2006), 105.
doi: 10.4171/CMH/45. |
[32] |
M. Struwe, Existence of periodic solutions of Hamiltonian systems on almost every energy surface,, Bol. Soc. Brasil. Mat. (N.S.), 20 (1990), 49.
doi: 10.1007/BF02585433. |
[33] |
I. A. Taĭmanov, Closed extremals on two-dimensional manifolds,, Uspekhi Mat. Nauk, 47 (1992), 143.
doi: 10.1070/RM1992v047n02ABEH000880. |
[1] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[2] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[3] |
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 |
[4] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[5] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[6] |
Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 737-754. doi: 10.3934/cpaa.2020287 |
[7] |
Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311 |
[8] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[9] |
Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021009 |
[10] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020467 |
[11] |
Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122 |
[12] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[13] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[14] |
Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008 |
[15] |
Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086 |
[16] |
Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118 |
[17] |
Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263 |
[18] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[19] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[20] |
Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020 doi: 10.3934/fods.2020018 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]