2015, 9: 141-146. doi: 10.3934/jmd.2015.9.141

On the existence of periodic orbits for magnetic systems on the two-sphere

1. 

Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, D-48149 Münster, Germany, Germany

Received  March 2015 Published  June 2015

We prove that there exist periodic orbits on almost all compact regular energy levels of a Hamiltonian function defined on a twisted cotangent bundle over the two-sphere. As a corollary, given any Riemannian two-sphere and a magnetic field on it, there exists a closed magnetic geodesic for almost all kinetic energy levels.
Citation: Gabriele Benedetti, Kai Zehmisch. On the existence of periodic orbits for magnetic systems on the two-sphere. Journal of Modern Dynamics, 2015, 9: 141-146. doi: 10.3934/jmd.2015.9.141
References:
[1]

A. Abbondandolo, L. Macarini and G. P. Paternain, On the existence of three closed magnetic geodesics for subcritical energies,, Comment. Math. Helv., 90 (2015), 155.  doi: 10.4171/CMH/350.  Google Scholar

[2]

A. Abbondandolo, L. Macarini, M. Mazzucchelli and G. P. Paternain, Infinitely many periodic orbits of exact magnetic flows on surfaces for almost every subcritical energy level,, preprint, (2014).   Google Scholar

[3]

V. I. Arnol'd, Some remarks on flows of line elements and frames,, Dokl. Akad. Nauk SSSR, 138 (1961), 255.   Google Scholar

[4]

L. Asselle and G. Benedetti, Periodic orbits of magnetic flows for weakly exact unbounded forms and for spherical manifolds,, preprint, (2014).   Google Scholar

[5]

L. Asselle and G. Benedetti, Infinitely many periodic orbits of non-exact oscillating magnetic fields on surfaces with genus at least two for almost every low energy level,, to appear in Calc. Var. Partial Differential Equations, (2015).  doi: 10.1007/s00526-015-0834-1.  Google Scholar

[6]

K. Cieliebak, U. Frauenfelder and G. P. Paternain, Symplectic topology of Mañé's critical values,, Geom. Topol., 14 (2010), 1765.  doi: 10.2140/gt.2010.14.1765.  Google Scholar

[7]

G. Contreras, The Palais-Smale condition on contact type energy levels for convex Lagrangian systems,, Calc. Var. Partial Differential Equations, 27 (2006), 321.  doi: 10.1007/s00526-005-0368-z.  Google Scholar

[8]

A. Floer, H. Hofer and D. Salamon, Transversality in elliptic Morse theory for the symplectic action,, Duke Math. J., 80 (1995), 251.  doi: 10.1215/S0012-7094-95-08010-7.  Google Scholar

[9]

U. Frauenfelder, V. L. Ginzburg and F. Schlenk, Energy capacity inequalities via an action selector,, in Geometry, (2005), 129.  doi: 10.1090/conm/387/07239.  Google Scholar

[10]

U. Frauenfelder and F. Schlenk, Hamiltonian dynamics on convex symplectic manifolds,, Israel J. Math., 159 (2007), 1.  doi: 10.1007/s11856-007-0037-3.  Google Scholar

[11]

V. L. Ginzburg, New generalizations of Poincaré's geometric theorem,, Funktsional. Anal. i Prilozhen., 21 (1987), 16.   Google Scholar

[12]

V. L. Ginzburg and B. Z. Gürel, Relative Hofer-Zehnder capacity and periodic orbits in twisted cotangent bundles,, Duke Math. J., 123 (2004), 1.  doi: 10.1215/S0012-7094-04-12311-5.  Google Scholar

[13]

H. Hofer and C. Viterbo, The Weinstein conjecture in the presence of holomorphic spheres,, Comm. Pure Appl. Math., 45 (1992), 583.  doi: 10.1002/cpa.3160450504.  Google Scholar

[14]

H. Hofer and E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo,, Invent. Math., 90 (1987), 1.  doi: 10.1007/BF01389030.  Google Scholar

[15]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics,, Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks], (1994).  doi: 10.1007/978-3-0348-8540-9.  Google Scholar

[16]

K. Irie, Hofer-Zehnder capacity and a Hamiltonian circle action with noncontractible orbits,, preprint, (2011).   Google Scholar

[17]

K. Irie, Hofer-Zehnder capacity of unit disk cotangent bundles and the loop product,, J. Eur. Math. Soc. (JEMS), 16 (2014), 2477.  doi: 10.4171/JEMS/491.  Google Scholar

[18]

F. Lalonde and D. McDuff, $J$-curves and the classification of rational and ruled symplectic $4$-manifolds,, in Contact and Symplectic Geometry (Cambridge, (1994), 3.   Google Scholar

[19]

G. Liu and G. Tian, Weinstein conjecture and GW-invariants,, Commun. Contemp. Math., 2 (2000), 405.  doi: 10.1142/S0219199700000256.  Google Scholar

[20]

G. Lu, The Weinstein conjecture on some symplectic manifolds containing the holomorphic spheres,, Kyushu J. Math., 52 (1998), 331.  doi: 10.2206/kyushujm.52.331.  Google Scholar

[21]

G. Lu, Gromov-Witten invariants and pseudo symplectic capacities,, Israel J. Math., 156 (2006), 1.  doi: 10.1007/BF02773823.  Google Scholar

[22]

L. Macarini, Hofer-Zehnder capacity and Hamiltonian circle actions,, Commun. Contemp. Math., 6 (2004), 913.  doi: 10.1142/S0219199704001550.  Google Scholar

[23]

L. Macarini and F. Schlenk, A refinement of the Hofer-Zehnder theorem on the existence of closed characteristics near a hypersurface,, Bull. London Math. Soc., 37 (2005), 297.  doi: 10.1112/S0024609304003923.  Google Scholar

[24]

D. McDuff, The structure of rational and ruled symplectic $4$-manifolds,, J. Amer. Math. Soc., 3 (1990), 679.  doi: 10.2307/1990934.  Google Scholar

[25]

D. McDuff and D. Salamon, $J$-holomorphic Curves and Symplectic Topology,, Amer. Math. Soc. Colloq. Publ., (2004).   Google Scholar

[26]

D. McDuff and J. Slimowitz, Hofer-Zehnder capacity and length minimizing Hamiltonian paths,, Geom. Topol., 5 (2001), 799.  doi: 10.2140/gt.2001.5.799.  Google Scholar

[27]

W. J. Merry, Closed orbits of a charge in a weakly exact magnetic field,, Pacific J. Math., 247 (2010), 189.  doi: 10.2140/pjm.2010.247.189.  Google Scholar

[28]

S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory,, Uspekhi Mat. Nauk, 37 (1982), 3.   Google Scholar

[29]

S. P. Novikov and I. Shmel'tser, Periodic solutions of Kirchhoff equations for the free motion of a rigid body in a fluid and the extended Lyusternik-Shnirel'man-Morse theory. I,, Funktsional. Anal. i Prilozhen., 15 (1981), 54.   Google Scholar

[30]

L. Polterovich, Geometry on the group of Hamiltonian diffeomorphisms,, in Proceedings of the International Congress of Mathematicians, (1998), 401.   Google Scholar

[31]

F. Schlenk, Applications of Hofer's geometry to Hamiltonian dynamics,, Comment. Math. Helv., 81 (2006), 105.  doi: 10.4171/CMH/45.  Google Scholar

[32]

M. Struwe, Existence of periodic solutions of Hamiltonian systems on almost every energy surface,, Bol. Soc. Brasil. Mat. (N.S.), 20 (1990), 49.  doi: 10.1007/BF02585433.  Google Scholar

[33]

I. A. Taĭmanov, Closed extremals on two-dimensional manifolds,, Uspekhi Mat. Nauk, 47 (1992), 143.  doi: 10.1070/RM1992v047n02ABEH000880.  Google Scholar

show all references

References:
[1]

A. Abbondandolo, L. Macarini and G. P. Paternain, On the existence of three closed magnetic geodesics for subcritical energies,, Comment. Math. Helv., 90 (2015), 155.  doi: 10.4171/CMH/350.  Google Scholar

[2]

A. Abbondandolo, L. Macarini, M. Mazzucchelli and G. P. Paternain, Infinitely many periodic orbits of exact magnetic flows on surfaces for almost every subcritical energy level,, preprint, (2014).   Google Scholar

[3]

V. I. Arnol'd, Some remarks on flows of line elements and frames,, Dokl. Akad. Nauk SSSR, 138 (1961), 255.   Google Scholar

[4]

L. Asselle and G. Benedetti, Periodic orbits of magnetic flows for weakly exact unbounded forms and for spherical manifolds,, preprint, (2014).   Google Scholar

[5]

L. Asselle and G. Benedetti, Infinitely many periodic orbits of non-exact oscillating magnetic fields on surfaces with genus at least two for almost every low energy level,, to appear in Calc. Var. Partial Differential Equations, (2015).  doi: 10.1007/s00526-015-0834-1.  Google Scholar

[6]

K. Cieliebak, U. Frauenfelder and G. P. Paternain, Symplectic topology of Mañé's critical values,, Geom. Topol., 14 (2010), 1765.  doi: 10.2140/gt.2010.14.1765.  Google Scholar

[7]

G. Contreras, The Palais-Smale condition on contact type energy levels for convex Lagrangian systems,, Calc. Var. Partial Differential Equations, 27 (2006), 321.  doi: 10.1007/s00526-005-0368-z.  Google Scholar

[8]

A. Floer, H. Hofer and D. Salamon, Transversality in elliptic Morse theory for the symplectic action,, Duke Math. J., 80 (1995), 251.  doi: 10.1215/S0012-7094-95-08010-7.  Google Scholar

[9]

U. Frauenfelder, V. L. Ginzburg and F. Schlenk, Energy capacity inequalities via an action selector,, in Geometry, (2005), 129.  doi: 10.1090/conm/387/07239.  Google Scholar

[10]

U. Frauenfelder and F. Schlenk, Hamiltonian dynamics on convex symplectic manifolds,, Israel J. Math., 159 (2007), 1.  doi: 10.1007/s11856-007-0037-3.  Google Scholar

[11]

V. L. Ginzburg, New generalizations of Poincaré's geometric theorem,, Funktsional. Anal. i Prilozhen., 21 (1987), 16.   Google Scholar

[12]

V. L. Ginzburg and B. Z. Gürel, Relative Hofer-Zehnder capacity and periodic orbits in twisted cotangent bundles,, Duke Math. J., 123 (2004), 1.  doi: 10.1215/S0012-7094-04-12311-5.  Google Scholar

[13]

H. Hofer and C. Viterbo, The Weinstein conjecture in the presence of holomorphic spheres,, Comm. Pure Appl. Math., 45 (1992), 583.  doi: 10.1002/cpa.3160450504.  Google Scholar

[14]

H. Hofer and E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo,, Invent. Math., 90 (1987), 1.  doi: 10.1007/BF01389030.  Google Scholar

[15]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics,, Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks], (1994).  doi: 10.1007/978-3-0348-8540-9.  Google Scholar

[16]

K. Irie, Hofer-Zehnder capacity and a Hamiltonian circle action with noncontractible orbits,, preprint, (2011).   Google Scholar

[17]

K. Irie, Hofer-Zehnder capacity of unit disk cotangent bundles and the loop product,, J. Eur. Math. Soc. (JEMS), 16 (2014), 2477.  doi: 10.4171/JEMS/491.  Google Scholar

[18]

F. Lalonde and D. McDuff, $J$-curves and the classification of rational and ruled symplectic $4$-manifolds,, in Contact and Symplectic Geometry (Cambridge, (1994), 3.   Google Scholar

[19]

G. Liu and G. Tian, Weinstein conjecture and GW-invariants,, Commun. Contemp. Math., 2 (2000), 405.  doi: 10.1142/S0219199700000256.  Google Scholar

[20]

G. Lu, The Weinstein conjecture on some symplectic manifolds containing the holomorphic spheres,, Kyushu J. Math., 52 (1998), 331.  doi: 10.2206/kyushujm.52.331.  Google Scholar

[21]

G. Lu, Gromov-Witten invariants and pseudo symplectic capacities,, Israel J. Math., 156 (2006), 1.  doi: 10.1007/BF02773823.  Google Scholar

[22]

L. Macarini, Hofer-Zehnder capacity and Hamiltonian circle actions,, Commun. Contemp. Math., 6 (2004), 913.  doi: 10.1142/S0219199704001550.  Google Scholar

[23]

L. Macarini and F. Schlenk, A refinement of the Hofer-Zehnder theorem on the existence of closed characteristics near a hypersurface,, Bull. London Math. Soc., 37 (2005), 297.  doi: 10.1112/S0024609304003923.  Google Scholar

[24]

D. McDuff, The structure of rational and ruled symplectic $4$-manifolds,, J. Amer. Math. Soc., 3 (1990), 679.  doi: 10.2307/1990934.  Google Scholar

[25]

D. McDuff and D. Salamon, $J$-holomorphic Curves and Symplectic Topology,, Amer. Math. Soc. Colloq. Publ., (2004).   Google Scholar

[26]

D. McDuff and J. Slimowitz, Hofer-Zehnder capacity and length minimizing Hamiltonian paths,, Geom. Topol., 5 (2001), 799.  doi: 10.2140/gt.2001.5.799.  Google Scholar

[27]

W. J. Merry, Closed orbits of a charge in a weakly exact magnetic field,, Pacific J. Math., 247 (2010), 189.  doi: 10.2140/pjm.2010.247.189.  Google Scholar

[28]

S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory,, Uspekhi Mat. Nauk, 37 (1982), 3.   Google Scholar

[29]

S. P. Novikov and I. Shmel'tser, Periodic solutions of Kirchhoff equations for the free motion of a rigid body in a fluid and the extended Lyusternik-Shnirel'man-Morse theory. I,, Funktsional. Anal. i Prilozhen., 15 (1981), 54.   Google Scholar

[30]

L. Polterovich, Geometry on the group of Hamiltonian diffeomorphisms,, in Proceedings of the International Congress of Mathematicians, (1998), 401.   Google Scholar

[31]

F. Schlenk, Applications of Hofer's geometry to Hamiltonian dynamics,, Comment. Math. Helv., 81 (2006), 105.  doi: 10.4171/CMH/45.  Google Scholar

[32]

M. Struwe, Existence of periodic solutions of Hamiltonian systems on almost every energy surface,, Bol. Soc. Brasil. Mat. (N.S.), 20 (1990), 49.  doi: 10.1007/BF02585433.  Google Scholar

[33]

I. A. Taĭmanov, Closed extremals on two-dimensional manifolds,, Uspekhi Mat. Nauk, 47 (1992), 143.  doi: 10.1070/RM1992v047n02ABEH000880.  Google Scholar

[1]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[2]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[3]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[4]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[5]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[6]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 737-754. doi: 10.3934/cpaa.2020287

[7]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[8]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[9]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[10]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[11]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[12]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008

[15]

Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086

[16]

Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118

[17]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[18]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[20]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (141)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]