Citation: |
[1] |
S. Alpern and V. S. Prasad, Typical Dynamics of Volume Preserving Homeomorphisms, Cambridge Tracts in Mathematics, 139, Cambridge University Press, Cambridge, 2000. |
[2] |
S. Angenent, Parabolic equations for curves on surfaces: Part II. Intersections, blow-up and generalized solutions, Ann. of Math. (2), 133 (1991), 171-215.doi: 10.2307/2944327. |
[3] |
S. Angenent, A remark on the topological entropy and invariant circles of an area preserving twistmap, in Twist Mappings and Their Applications, IMA Vol. Math. Appl., 44, Springer, New York, 1992, 1-5. |
[4] |
S. Angenent, Self-intersecting geodesics and entropy of the geodesic flow, Acta Math. Sin. (Engl. Ser.), 24 (2008), 1949-1952.doi: 10.1007/s10114-008-6439-2. |
[5] |
V. Bangert, On the existence of closed geodesics on two-spheres, Internat. J. Math., 4 (1993), 1-10.doi: 10.1142/S0129167X93000029. |
[6] |
D. Bao, S.-S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000.doi: 10.1007/978-1-4612-1268-3. |
[7] |
P. Bernard and C. Labrousse, An entropic characterization of the flat metrics on the two torus, to appear in Geometriae Dedicata, (2015).doi: 10.1007/s10711-015-0098-0. |
[8] |
G. D. Birkhoff, Dynamical Systems, American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1927. |
[9] |
A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems. Geometry, Topology, Classification, Chapman & Hall/CRC, Boca Raton, FL, 2004.doi: 10.1201/9780203643426. |
[10] |
M. Bonino, Around Brouwer's theory of fixed point free planar homeomorphisms, Notes de cours de l'École d'été "Méthodes topologiques en dynamique des surfaces,'' Université Grenoble I, 2006. Available from: http://www.math.univ-paris13.fr/ bonino/travaux.html. |
[11] |
M. Brown, A new proof of Brouwer's lemma on translation arcs, Houston J. Math., 10 (1984), 35-41. |
[12] |
E. I. Dinaburg, On the relations among various entropy characteristics of dynamical systems, Math. USSR Izv., 5 (1971), 337-378.doi: 10.1070/IM1971v005n02ABEH001050. |
[13] |
V. J. Donnay, Geodesic flow on the two-sphere. II. Ergodicity, in Dynamical Systems, Lecture Notes in Mathematics, 1342, Springer, Berlin, 1988, 112-153.doi: 10.1007/BFb0082827. |
[14] |
H. Duan and Y. Long, A remark on the existence of closed geodesics on symmetric Finsler 2-spheres, 2012. Available from: http://www.paper.edu.cn/download/downPaper/201202-387. |
[15] |
J. Franks, Geodesics on $\mathbbS^2$ and periodic points of annulus homeomorphisms, Invent. Math., 108 (1992), 403-418.doi: 10.1007/BF02100612. |
[16] |
J. Franks and M. Handel, Entropy zero area preserving diffeomorphisms of $\mathbbS^2$, Geom. Topol., 16 (2012), 2187-2284.doi: 10.2140/gt.2012.16.2187. |
[17] |
E. Glasmachers and G. Knieper, Characterization of geodesic flows on $\mathbbT^2$ with and without positive topological entropy, Geom. Funct. Anal., 20 (2010), 1259-1277.doi: 10.1007/s00039-010-0087-2. |
[18] |
E. Glasmachers and G. Knieper, Minimal geodesic foliation on $\mathbbT^2$ in case of vanishing topological entropy, J. Topol. Anal., 3 (2011), 511-520.doi: 10.1142/S1793525311000623. |
[19] |
M. A. Grayson, Shortening embedded curves, Ann. of Math. (2), 129 (1989), 71-111.doi: 10.2307/1971486. |
[20] |
A. Harris and G. P. Paternain, Dynamically convex Finsler metrics and $J$-holomorphic embedding of asymptotic cylinders, Ann. Global Anal. Geom., 34 (2008), 115-134.doi: 10.1007/s10455-008-9111-2. |
[21] |
G. A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. of Math. (2), 33 (1932), 719-739.doi: 10.2307/1968215. |
[22] |
M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, 33, Springer-Verlag, New York, 1976. |
[23] |
A. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems, Math. USSR Izv., 7 (1973), 535-571. |
[24] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173. |
[25] |
A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511809187. |
[26] |
G. P. Paternain, Entropy and completely integrable Hamiltonian systems, Proc. Amer. Math. Soc., 113 (1991), 871-873.doi: 10.1090/S0002-9939-1991-1059632-7. |
[27] |
J. P. Schröder, Invariant tori and topological entropy in Tonelli Lagrangian systems on the 2-torus, to appear in Ergodic Theory and Dynamical Systems, (2015).doi: 10.1017/etds.2014.137. |
[28] |
J. P. Schröder, Global minimizers for Tonelli Lagrangians on the 2-torus, J. Topol. Anal., 7 (2015), 261-291.doi: 10.1142/S1793525315500090. |
[29] |
Y. Yomdin, Volume growth and entropy, Israel J. Math., 57 (1987), 285-300.doi: 10.1007/BF02766215. |