2015, 9: 203-218. doi: 10.3934/jmd.2015.9.203

On the intersection of sectional-hyperbolic sets

1. 

Universidad Nacional de Colombia, Depto. de Matemáticas, Facultad de Ciencias, Bogota, Colombia

2. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro,, P. O. Box 68530, 21945-970 Rio de Janeiro, Brazil

Received  October 2014 Revised  June 2015 Published  September 2015

We study the intersection of a positively sectional-hyperbolic set and a negatively sectional-hyperbolic set of a flow on a compact manifold. Indeed, we show that such an intersection is not a hyperbolic set in general. Next, we show that such an intersection is a hyperbolic set if the sets involved in the intersection are both transitive. In general, we prove that such an intersection is the disjoint union of a nonsingular hyperbolic set, a finite set of singularities, and a set of regular orbits joining these dynamical objects. Finally, we exhibit a three-dimensional star flow with a positively (but not negatively) sectional-hyperbolic homoclinic class and a negatively (but not positively) sectional-hyperbolic homoclinic class whose intersection is a periodic orbit. This provides a counterexample to a conjecture of Shi, Zhu, Gan and Wen ([25], [26]).
Citation: Serafin Bautista, Carlos A. Morales. On the intersection of sectional-hyperbolic sets. Journal of Modern Dynamics, 2015, 9: 203-218. doi: 10.3934/jmd.2015.9.203
References:
[1]

V. S. Afraĭmovič, V. V. Bykov and L. P. Sil'nikov, The origin and structure of the Lorenz attractor,, Dokl. Akad. Nauk SSSR, 234 (1977), 336.   Google Scholar

[2]

V. Araújo and M. J. Pacifico, Three-Dimensional Flows,, With a foreword by Marcelo Viana, (2010).  doi: 10.1007/978-3-642-11414-4.  Google Scholar

[3]

V. Araujo and L. Salgado, Infinitesimal Lyapunov functions for singular flows,, Math. Z., 275 (2013), 863.  doi: 10.1007/s00209-013-1163-8.  Google Scholar

[4]

A. Arbieto and C. A. Morales, A dichotomy for higher-dimensional flows,, Proc. Amer. Math. Soc., 141 (2013), 2817.  doi: 10.1090/S0002-9939-2013-11536-4.  Google Scholar

[5]

R. Bamon, R. Labarca, R. Mañé and M. J. Pacifico, The explosion of singular cycles,, Inst. Hautes Études Sci. Publ. Math., 78 (1993), 207.   Google Scholar

[6]

S. Bautista, The geometric Lorenz attractor is a homoclinic class,, Bol. Mat. (N.S.), 11 (2004), 69.   Google Scholar

[7]

S. Bautista and C. A. Morales, Lectures on Sectional-Anosov Flows,, preprint, ().   Google Scholar

[8]

S. Bautista, C. A. Morales and M. J. Pacifico, On the intersection of homoclinic classes on singular-hyperbolic sets,, Discrete Contin. Dyn. Syst., 19 (2007), 761.  doi: 10.3934/dcds.2007.19.761.  Google Scholar

[9]

C. Bonatti, A. Pumariño and M. Viana, Lorenz attractors with arbitrary expanding dimension,, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 883.  doi: 10.1016/S0764-4442(97)80131-0.  Google Scholar

[10]

C. Diminnie, S. Gahler and A. White, $2$-inner product spaces,, Collection of articles dedicated to Stanisław Gołąb on his 70th birthday, 6 (1973), 525.   Google Scholar

[11]

S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition,, Invent. Math., 164 (2006), 279.  doi: 10.1007/s00222-005-0479-3.  Google Scholar

[12]

S. Gähler, Lineare 2-normierte Räume,, Math. Nachr., 28 (1964), 1.  doi: 10.1002/mana.19640280102.  Google Scholar

[13]

J. Guckenheimer and R. Williams, Structural stability of Lorenz attractors,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59.   Google Scholar

[14]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Math., (1977).   Google Scholar

[15]

A. Kawaguchi, On areal spaces. I. Metric tensors in $n$-dimensional spaces based on the notion of two-dimensional area,, Tensor N.S., 1 (1950), 14.   Google Scholar

[16]

R. Labarca and M. J. Pacifico, Stability of singularity horseshoes,, Topology, 25 (1986), 337.  doi: 10.1016/0040-9383(86)90048-0.  Google Scholar

[17]

A. M. López, Sectional Hyperbolic Sets in Higher Dimensions,, Tese de Doutorado, (2015).   Google Scholar

[18]

A. M. López and H. Sánchez, Sectional Anosov flows: Existence of Venice masks with two singularities,, , ().   Google Scholar

[19]

R. Metzger and C. A. Morales, Sectional-hyperbolic systems,, Ergodic Theory Dynam. Systems, 28 (2008), 1587.  doi: 10.1017/S0143385707000995.  Google Scholar

[20]

C. A. Morales and M. J. Pacifico, A dichotomy for three-dimensional vector fields,, Ergodic Theory Dynam. Systems, 23 (2003), 1575.  doi: 10.1017/S0143385702001621.  Google Scholar

[21]

C. A. Morales and M. J. Pacifico, Sufficient conditions for robustness of attractors,, Pacific J. Math., 216 (2004), 327.  doi: 10.2140/pjm.2004.216.327.  Google Scholar

[22]

C. A. Morales and M. J. Pacifico, A spectral decomposition for singular-hyperbolic sets,, Pacific J. Math., 229 (2007), 223.  doi: 10.2140/pjm.2007.229.223.  Google Scholar

[23]

C. A. Morales and M. Vilches, On 2-Riemannian manifolds,, SUT J. Math., 46 (2010), 119.   Google Scholar

[24]

S. Newhouse, On simple arcs between structurally stable flows,, in Dynamical Systems-Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, (1974), 209.   Google Scholar

[25]

Y. Shi, S. Gan and L. Wen, On the singular-hyperbolicity of star flows,, J. Mod. Dyn., 8 (2014), 191.  doi: 10.3934/jmd.2014.8.191.  Google Scholar

[26]

S. Zhu, S. Gan and L. Wen, Indices of singularities of robustly transitive sets,, Discrete Contin. Dyn. Syst., 21 (2008), 945.  doi: 10.3934/dcds.2008.21.945.  Google Scholar

show all references

References:
[1]

V. S. Afraĭmovič, V. V. Bykov and L. P. Sil'nikov, The origin and structure of the Lorenz attractor,, Dokl. Akad. Nauk SSSR, 234 (1977), 336.   Google Scholar

[2]

V. Araújo and M. J. Pacifico, Three-Dimensional Flows,, With a foreword by Marcelo Viana, (2010).  doi: 10.1007/978-3-642-11414-4.  Google Scholar

[3]

V. Araujo and L. Salgado, Infinitesimal Lyapunov functions for singular flows,, Math. Z., 275 (2013), 863.  doi: 10.1007/s00209-013-1163-8.  Google Scholar

[4]

A. Arbieto and C. A. Morales, A dichotomy for higher-dimensional flows,, Proc. Amer. Math. Soc., 141 (2013), 2817.  doi: 10.1090/S0002-9939-2013-11536-4.  Google Scholar

[5]

R. Bamon, R. Labarca, R. Mañé and M. J. Pacifico, The explosion of singular cycles,, Inst. Hautes Études Sci. Publ. Math., 78 (1993), 207.   Google Scholar

[6]

S. Bautista, The geometric Lorenz attractor is a homoclinic class,, Bol. Mat. (N.S.), 11 (2004), 69.   Google Scholar

[7]

S. Bautista and C. A. Morales, Lectures on Sectional-Anosov Flows,, preprint, ().   Google Scholar

[8]

S. Bautista, C. A. Morales and M. J. Pacifico, On the intersection of homoclinic classes on singular-hyperbolic sets,, Discrete Contin. Dyn. Syst., 19 (2007), 761.  doi: 10.3934/dcds.2007.19.761.  Google Scholar

[9]

C. Bonatti, A. Pumariño and M. Viana, Lorenz attractors with arbitrary expanding dimension,, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 883.  doi: 10.1016/S0764-4442(97)80131-0.  Google Scholar

[10]

C. Diminnie, S. Gahler and A. White, $2$-inner product spaces,, Collection of articles dedicated to Stanisław Gołąb on his 70th birthday, 6 (1973), 525.   Google Scholar

[11]

S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition,, Invent. Math., 164 (2006), 279.  doi: 10.1007/s00222-005-0479-3.  Google Scholar

[12]

S. Gähler, Lineare 2-normierte Räume,, Math. Nachr., 28 (1964), 1.  doi: 10.1002/mana.19640280102.  Google Scholar

[13]

J. Guckenheimer and R. Williams, Structural stability of Lorenz attractors,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59.   Google Scholar

[14]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Math., (1977).   Google Scholar

[15]

A. Kawaguchi, On areal spaces. I. Metric tensors in $n$-dimensional spaces based on the notion of two-dimensional area,, Tensor N.S., 1 (1950), 14.   Google Scholar

[16]

R. Labarca and M. J. Pacifico, Stability of singularity horseshoes,, Topology, 25 (1986), 337.  doi: 10.1016/0040-9383(86)90048-0.  Google Scholar

[17]

A. M. López, Sectional Hyperbolic Sets in Higher Dimensions,, Tese de Doutorado, (2015).   Google Scholar

[18]

A. M. López and H. Sánchez, Sectional Anosov flows: Existence of Venice masks with two singularities,, , ().   Google Scholar

[19]

R. Metzger and C. A. Morales, Sectional-hyperbolic systems,, Ergodic Theory Dynam. Systems, 28 (2008), 1587.  doi: 10.1017/S0143385707000995.  Google Scholar

[20]

C. A. Morales and M. J. Pacifico, A dichotomy for three-dimensional vector fields,, Ergodic Theory Dynam. Systems, 23 (2003), 1575.  doi: 10.1017/S0143385702001621.  Google Scholar

[21]

C. A. Morales and M. J. Pacifico, Sufficient conditions for robustness of attractors,, Pacific J. Math., 216 (2004), 327.  doi: 10.2140/pjm.2004.216.327.  Google Scholar

[22]

C. A. Morales and M. J. Pacifico, A spectral decomposition for singular-hyperbolic sets,, Pacific J. Math., 229 (2007), 223.  doi: 10.2140/pjm.2007.229.223.  Google Scholar

[23]

C. A. Morales and M. Vilches, On 2-Riemannian manifolds,, SUT J. Math., 46 (2010), 119.   Google Scholar

[24]

S. Newhouse, On simple arcs between structurally stable flows,, in Dynamical Systems-Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, (1974), 209.   Google Scholar

[25]

Y. Shi, S. Gan and L. Wen, On the singular-hyperbolicity of star flows,, J. Mod. Dyn., 8 (2014), 191.  doi: 10.3934/jmd.2014.8.191.  Google Scholar

[26]

S. Zhu, S. Gan and L. Wen, Indices of singularities of robustly transitive sets,, Discrete Contin. Dyn. Syst., 21 (2008), 945.  doi: 10.3934/dcds.2008.21.945.  Google Scholar

[1]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[2]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[3]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[4]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[5]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[6]

Jintai Ding, Zheng Zhang, Joshua Deaton. The singularity attack to the multivariate signature scheme HIMQ-3. Advances in Mathematics of Communications, 2021, 15 (1) : 65-72. doi: 10.3934/amc.2020043

[7]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[8]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[9]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[10]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[11]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[12]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[13]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[14]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021008

[15]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021005

[16]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[17]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[18]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[19]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[20]

Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]