Citation: |
[1] |
D. Cristofaro-Gardiner and M. Hutchings, From one Reeb orbit to two, arXiv:1202.4839v4. |
[2] |
D. Cristofaro-Gardiner, M. Hutchings and V. G. B. Ramos, The asymptotics of ECH capacities, Invent. Math., 199 (2015), 187-214.doi: 10.1007/s00222-014-0510-7. |
[3] |
V. L. Ginzburg and B. Z. Gürel, On the generic existence of periodic orbits in Hamiltonian dynamics, J. Mod. Dyn., 3 (2009), 595-610.doi: 10.3934/jmd.2009.3.595. |
[4] |
M.-R. Herman, Exemples de flots hamiltoniens dont aucune perturbation en topologie $C^\infty$ n'a d'orbites périodiques sur un ouvert de surfaces d'énergies, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 989-994. |
[5] |
M. Hutchings, Quantitative embedded contact homology, J. Differential Geom., 88 (2011), 231-266. |
[6] |
M. Hutchings, Lecture notes on embedded contact homology, in Contact and Symplectic Topology, Bolyai Soc. Math. Stud., 26, János Bolyai Math. Soc., Budapest, 2014, 389-484.doi: 10.1007/978-3-319-02036-5_9. |
[7] | |
[8] |
C. C. Pugh and C. Robinson, The $C^1$ closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems, 3 (1983), 261-313.doi: 10.1017/S0143385700001978. |
[9] |
L. Rifford, Closing geodesics in $C^1$ topology, J. Differential Geom., 91 (2012), 361-381. |
[10] |
M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., 193 (2000), 419-461.doi: 10.2140/pjm.2000.193.419. |