-
Previous Article
Dynamical cubes and a criteria for systems having product extensions
- JMD Home
- This Volume
-
Next Article
Erratum: On Omri Sarig's work on the dynamics of surfaces
Dense existence of periodic Reeb orbits and ECH spectral invariants
1. | Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan |
References:
[1] |
D. Cristofaro-Gardiner and M. Hutchings, From one Reeb orbit to two,, , ().
|
[2] |
D. Cristofaro-Gardiner, M. Hutchings and V. G. B. Ramos, The asymptotics of ECH capacities, Invent. Math., 199 (2015), 187-214.
doi: 10.1007/s00222-014-0510-7. |
[3] |
V. L. Ginzburg and B. Z. Gürel, On the generic existence of periodic orbits in Hamiltonian dynamics, J. Mod. Dyn., 3 (2009), 595-610.
doi: 10.3934/jmd.2009.3.595. |
[4] |
M.-R. Herman, Exemples de flots hamiltoniens dont aucune perturbation en topologie $C^\infty$ n'a d'orbites périodiques sur un ouvert de surfaces d'énergies, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 989-994. |
[5] |
M. Hutchings, Quantitative embedded contact homology, J. Differential Geom., 88 (2011), 231-266. |
[6] |
M. Hutchings, Lecture notes on embedded contact homology, in Contact and Symplectic Topology, Bolyai Soc. Math. Stud., 26, János Bolyai Math. Soc., Budapest, 2014, 389-484.
doi: 10.1007/978-3-319-02036-5_9. |
[7] | |
[8] |
C. C. Pugh and C. Robinson, The $C^1$ closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems, 3 (1983), 261-313.
doi: 10.1017/S0143385700001978. |
[9] |
L. Rifford, Closing geodesics in $C^1$ topology, J. Differential Geom., 91 (2012), 361-381. |
[10] |
M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., 193 (2000), 419-461.
doi: 10.2140/pjm.2000.193.419. |
show all references
References:
[1] |
D. Cristofaro-Gardiner and M. Hutchings, From one Reeb orbit to two,, , ().
|
[2] |
D. Cristofaro-Gardiner, M. Hutchings and V. G. B. Ramos, The asymptotics of ECH capacities, Invent. Math., 199 (2015), 187-214.
doi: 10.1007/s00222-014-0510-7. |
[3] |
V. L. Ginzburg and B. Z. Gürel, On the generic existence of periodic orbits in Hamiltonian dynamics, J. Mod. Dyn., 3 (2009), 595-610.
doi: 10.3934/jmd.2009.3.595. |
[4] |
M.-R. Herman, Exemples de flots hamiltoniens dont aucune perturbation en topologie $C^\infty$ n'a d'orbites périodiques sur un ouvert de surfaces d'énergies, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 989-994. |
[5] |
M. Hutchings, Quantitative embedded contact homology, J. Differential Geom., 88 (2011), 231-266. |
[6] |
M. Hutchings, Lecture notes on embedded contact homology, in Contact and Symplectic Topology, Bolyai Soc. Math. Stud., 26, János Bolyai Math. Soc., Budapest, 2014, 389-484.
doi: 10.1007/978-3-319-02036-5_9. |
[7] | |
[8] |
C. C. Pugh and C. Robinson, The $C^1$ closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems, 3 (1983), 261-313.
doi: 10.1017/S0143385700001978. |
[9] |
L. Rifford, Closing geodesics in $C^1$ topology, J. Differential Geom., 91 (2012), 361-381. |
[10] |
M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., 193 (2000), 419-461.
doi: 10.2140/pjm.2000.193.419. |
[1] |
Peter Albers, Jean Gutt, Doris Hein. Periodic Reeb orbits on prequantization bundles. Journal of Modern Dynamics, 2018, 12: 123-150. doi: 10.3934/jmd.2018005 |
[2] |
Mark Pollicott. Closed orbits and homology for $C^2$-flows. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 529-534. doi: 10.3934/dcds.1999.5.529 |
[3] |
Simon Lloyd. On the Closing Lemma problem for the torus. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 951-962. doi: 10.3934/dcds.2009.25.951 |
[4] |
Peter Albers, Urs Frauenfelder. Floer homology for negative line bundles and Reeb chords in prequantization spaces. Journal of Modern Dynamics, 2009, 3 (3) : 407-456. doi: 10.3934/jmd.2009.3.407 |
[5] |
Lan Wen. A uniform $C^1$ connecting lemma. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257 |
[6] |
Al Momin. Contact homology of orbit complements and implied existence. Journal of Modern Dynamics, 2011, 5 (3) : 409-472. doi: 10.3934/jmd.2011.5.409 |
[7] |
Shuhei Hayashi. A forward Ergodic Closing Lemma and the Entropy Conjecture for nonsingular endomorphisms away from tangencies. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2285-2313. doi: 10.3934/dcds.2020114 |
[8] |
Marcelo R. R. Alves. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds. Journal of Modern Dynamics, 2016, 10: 497-509. doi: 10.3934/jmd.2016.10.497 |
[9] |
Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177 |
[10] |
Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505 |
[11] |
Katrin Gelfert, Christian Wolf. On the distribution of periodic orbits. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 949-966. doi: 10.3934/dcds.2010.26.949 |
[12] |
Jacky Cresson, Christophe Guillet. Periodic orbits and Arnold diffusion. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 451-470. doi: 10.3934/dcds.2003.9.451 |
[13] |
Shuhei Hayashi. Erratum and addendum to "A forward Ergodic Closing Lemma and the Entropy Conjecture for nonsingular endomorphisms away from tangencies" (Volume 40, Number 4, 2020, 2285-2313). Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2433-2437. doi: 10.3934/dcds.2021196 |
[14] |
Ayadi Lazrag, Ludovic Rifford, Rafael O. Ruggiero. Franks' lemma for $\mathbf{C}^2$-Mañé perturbations of Riemannian metrics and applications to persistence. Journal of Modern Dynamics, 2016, 10: 379-411. doi: 10.3934/jmd.2016.10.379 |
[15] |
Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331 |
[16] |
Guji Tian, Qi Wang, Chao-Jiang Xu. $C^\infty$ Local solutions of elliptical $2-$Hessian equation in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1023-1039. doi: 10.3934/dcds.2016.36.1023 |
[17] |
Paolo Perfetti. Hamiltonian equations on $\mathbb{T}^\infty$ and almost-periodic solutions. Conference Publications, 2001, 2001 (Special) : 303-309. doi: 10.3934/proc.2001.2001.303 |
[18] |
Hui Liu, Ling Zhang. Multiplicity of closed Reeb orbits on dynamically convex $ \mathbb{R}P^{2n-1} $ for $ n\geq2 $. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1801-1816. doi: 10.3934/dcds.2021172 |
[19] |
Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109 |
[20] |
Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]