2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51

Spectral killers and Poisson bracket invariants

1. 

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, United States

Received  May 2014 Revised  October 2014 Published  May 2015

We find optimal upper bounds for spectral invariants of a Hamiltonian whose support is contained in a union of mutually disjoint displaceable balls. This gives a partial answer to a question posed by Leonid Polterovich in connection with his recent work on Poisson bracket invariants of coverings.
Citation: Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants. Journal of Modern Dynamics, 2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51
References:
[1]

K. Cieliebak, A. Floer, H. Hofer and K. Wysocki, Applications of symplectic homology. II. Stability of the action spectrum, Math. Z., 223 (1996), 27-45. doi: 10.1007/BF02621587.  Google Scholar

[2]

M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not., (2003), 1635-1676. doi: 10.1155/S1073792803210011.  Google Scholar

[3]

M. Entov and L. Polterovich, Quasi-states and symplectic intersections, Comment. Math. Helv., 81 (2006), 75-99. doi: 10.4171/CMH/43.  Google Scholar

[4]

M. Entov, L. Polterovich, and F. Zapolsky, Quasi-morphisms and the Poisson bracket, Pure Appl. Math. Q., 3 (2007), Special Issue: In honor of Grigory Margulis, Part 1, 1037-1055. doi: 10.4310/PAMQ.2007.v3.n4.a9.  Google Scholar

[5]

V. L. Ginzburg, The Conley conjecture, Ann. of Math. (2), 172 (2010), 1127-1180. doi: 10.4007/annals.2010.172.1129.  Google Scholar

[6]

D. McDuff and D. Salamon, $J$-Holomorphic Curves and Symplectic Topology, American Mathematical Society Colloquium Publications, 52, American Mathematical Society, Providence, RI, 2004.  Google Scholar

[7]

A. Oancea, A survey of Floer homology for manifolds with contact type boundary or symplectic homology, in Symplectic Geometry and Floer Homology. A Survey of the Floer Homology for Manifolds with Contact Type Boundary or Symplectic Homology, Ensaios Mat., 7, Soc. Brasil. Mat., Rio de Janeiro, 2004, 51-91.  Google Scholar

[8]

Y.-G. Oh, Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 525-570. doi: 10.1007/0-8176-4419-9_18.  Google Scholar

[9]

Y.-G. Oh, Lectures on Floer theory and spectral invariants of Hamiltonian flows, in Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, NATO Sci. Ser. II Math. Phys. Chem., 217, Springer, Dordrecht, 2006, 321-416. doi: 10.1007/1-4020-4266-3_08.  Google Scholar

[10]

S. Piunikhin, D. Salamon and M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, in Contact and Symplectic Geometry (Cambridge, 1994), Publ. Newton Inst., 8, Cambridge Univ. Press, Cambridge, 1996, 171-200.  Google Scholar

[11]

L. Polterovich, Quantum unsharpness and symplectic rigidity, Lett. Math. Phys., 102 (2012), 245-264. doi: 10.1007/s11005-012-0564-7.  Google Scholar

[12]

L. Polterovich, Symplectic geometry of quantum noise, Comm. Math. Phys., 327 (2014), 481-519. doi: 10.1007/s00220-014-1937-9.  Google Scholar

[13]

M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., 193 (2000), 419-461. doi: 10.2140/pjm.2000.193.419.  Google Scholar

[14]

M. Usher, The sharp energy-capacity inequality, Commun. Contemp. Math., 12 (2010), 457-473. doi: 10.1142/S0219199710003889.  Google Scholar

[15]

C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann., 292 (1992), 685-710. doi: 10.1007/BF01444643.  Google Scholar

show all references

References:
[1]

K. Cieliebak, A. Floer, H. Hofer and K. Wysocki, Applications of symplectic homology. II. Stability of the action spectrum, Math. Z., 223 (1996), 27-45. doi: 10.1007/BF02621587.  Google Scholar

[2]

M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not., (2003), 1635-1676. doi: 10.1155/S1073792803210011.  Google Scholar

[3]

M. Entov and L. Polterovich, Quasi-states and symplectic intersections, Comment. Math. Helv., 81 (2006), 75-99. doi: 10.4171/CMH/43.  Google Scholar

[4]

M. Entov, L. Polterovich, and F. Zapolsky, Quasi-morphisms and the Poisson bracket, Pure Appl. Math. Q., 3 (2007), Special Issue: In honor of Grigory Margulis, Part 1, 1037-1055. doi: 10.4310/PAMQ.2007.v3.n4.a9.  Google Scholar

[5]

V. L. Ginzburg, The Conley conjecture, Ann. of Math. (2), 172 (2010), 1127-1180. doi: 10.4007/annals.2010.172.1129.  Google Scholar

[6]

D. McDuff and D. Salamon, $J$-Holomorphic Curves and Symplectic Topology, American Mathematical Society Colloquium Publications, 52, American Mathematical Society, Providence, RI, 2004.  Google Scholar

[7]

A. Oancea, A survey of Floer homology for manifolds with contact type boundary or symplectic homology, in Symplectic Geometry and Floer Homology. A Survey of the Floer Homology for Manifolds with Contact Type Boundary or Symplectic Homology, Ensaios Mat., 7, Soc. Brasil. Mat., Rio de Janeiro, 2004, 51-91.  Google Scholar

[8]

Y.-G. Oh, Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 525-570. doi: 10.1007/0-8176-4419-9_18.  Google Scholar

[9]

Y.-G. Oh, Lectures on Floer theory and spectral invariants of Hamiltonian flows, in Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, NATO Sci. Ser. II Math. Phys. Chem., 217, Springer, Dordrecht, 2006, 321-416. doi: 10.1007/1-4020-4266-3_08.  Google Scholar

[10]

S. Piunikhin, D. Salamon and M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, in Contact and Symplectic Geometry (Cambridge, 1994), Publ. Newton Inst., 8, Cambridge Univ. Press, Cambridge, 1996, 171-200.  Google Scholar

[11]

L. Polterovich, Quantum unsharpness and symplectic rigidity, Lett. Math. Phys., 102 (2012), 245-264. doi: 10.1007/s11005-012-0564-7.  Google Scholar

[12]

L. Polterovich, Symplectic geometry of quantum noise, Comm. Math. Phys., 327 (2014), 481-519. doi: 10.1007/s00220-014-1937-9.  Google Scholar

[13]

M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., 193 (2000), 419-461. doi: 10.2140/pjm.2000.193.419.  Google Scholar

[14]

M. Usher, The sharp energy-capacity inequality, Commun. Contemp. Math., 12 (2010), 457-473. doi: 10.1142/S0219199710003889.  Google Scholar

[15]

C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann., 292 (1992), 685-710. doi: 10.1007/BF01444643.  Google Scholar

[1]

Virginie Bonnaillie-Noël, Corentin Léna. Spectral minimal partitions of a sector. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 27-53. doi: 10.3934/dcdsb.2014.19.27

[2]

Frol Zapolsky. Quasi-states and the Poisson bracket on surfaces. Journal of Modern Dynamics, 2007, 1 (3) : 465-475. doi: 10.3934/jmd.2007.1.465

[3]

Karina Samvelyan, Frol Zapolsky. Rigidity of the ${{L}^{p}}$-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004

[4]

Francisco Crespo, Francisco Javier Molero, Sebastián Ferrer. Poisson and integrable systems through the Nambu bracket and its Jacobi multiplier. Journal of Geometric Mechanics, 2016, 8 (2) : 169-178. doi: 10.3934/jgm.2016002

[5]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[6]

Michael Entov, Leonid Polterovich, Daniel Rosen. Poisson brackets, quasi-states and symplectic integrators. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1455-1468. doi: 10.3934/dcds.2010.28.1455

[7]

Andrew James Bruce, Janusz Grabowski. Symplectic $ {\mathbb Z}_2^n $-manifolds. Journal of Geometric Mechanics, 2021, 13 (3) : 285-311. doi: 10.3934/jgm.2021020

[8]

Martin Pinsonnault. Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds. Journal of Modern Dynamics, 2008, 2 (3) : 431-455. doi: 10.3934/jmd.2008.2.431

[9]

Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321

[10]

Gusein Sh. Guseinov. Spectral method for deriving multivariate Poisson summation formulae. Communications on Pure & Applied Analysis, 2013, 12 (1) : 359-373. doi: 10.3934/cpaa.2013.12.359

[11]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021, 8 (2) : 165-181. doi: 10.3934/jcd.2021008

[12]

Chi-Kwong Fok. Picard group of isotropic realizations of twisted Poisson manifolds. Journal of Geometric Mechanics, 2016, 8 (2) : 179-197. doi: 10.3934/jgm.2016003

[13]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[14]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

[15]

Dmitry Jakobson and Iosif Polterovich. Lower bounds for the spectral function and for the remainder in local Weyl's law on manifolds. Electronic Research Announcements, 2005, 11: 71-77.

[16]

Pierre-Damien Thizy. Schrödinger-Poisson systems in $4$-dimensional closed manifolds. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2257-2284. doi: 10.3934/dcds.2016.36.2257

[17]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks & Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[18]

Xing-Fu Zhong. Variational principles of invariance pressures on partitions. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 491-508. doi: 10.3934/dcds.2020019

[19]

Michal Kupsa, Štěpán Starosta. On the partitions with Sturmian-like refinements. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3483-3501. doi: 10.3934/dcds.2015.35.3483

[20]

Bernard Helffer, Thomas Hoffmann-Ostenhof, Susanna Terracini. Nodal minimal partitions in dimension $3$. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 617-635. doi: 10.3934/dcds.2010.28.617

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]