\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Topological full groups of minimal subshifts with subgroups of intermediate growth

Abstract Related Papers Cited by

  • This work is partially supported by the ERC starting grant GA 257110 “RaWG”. We show that every Grigorchuk group $G_\omega$ embeds in (the commutator subgroup of) the topological full group of a minimal subshift. In particular, the topological full group of a Cantor minimal system can have subgroups of intermediate growth, a question raised by Grigorchuk; moreover it can have finitely generated infinite torsion subgroups, answering a question of Cornulier. By estimating the word-complexity of this subshift, we deduce that every Grigorchuk group $G_\omega$ can be embedded in a finitely generated simple group that has trivial Poisson boundary for every simple random walk.

        This work is partially supported by the ERC starting grant GA 257110 “RaWG”.
    Mathematics Subject Classification: Primary: 37B10; Secondary: 20F69, 20F65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Avez, Théorème de Choquet-Deny pour les groupes à croissance non exponentielle, C. R. Acad. Sci. Paris Sér. A, 279 (1974), 25-28.

    [2]

    L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova (Din. Sist., Avtom. i Beskon. Gruppy), 231 (2000), 5-45.

    [3]

    L. Bartholdi, R. I. Grigorchuk and Z. Šuniḱ, Branch groups, in Handbook of Algebra, Vol. 3, North-Holland, Amsterdam, 2003, 989-1112.doi: 10.1016/S1570-7954(03)80078-5.

    [4]

    J. Cassaigne and F. Nicolas, Factor complexity, in Combinatorics, Automata and Number Theory, Encyclopedia Math. Appl., 135, Cambridge Univ. Press, Cambridge, 2010, 163-247.

    [5]

    Y. Cornulier, Groupes pleins-topologiques [d'après Matui, Juschenko, Monod,...], Astérisque, Séminaire Bourbaki, Vol. 2012/2013, (361), Exp. No. 1064, 2014.

    [6]

    G. Elek and N. Monod, On the topological full group of a minimal Cantor $\mathbbZ^2$-system, Proc. Amer. Math. Soc., 141 (2013), 3549-3552.doi: 10.1090/S0002-9939-2013-11654-0.

    [7]

    R. Grigorchuk, D. Lenz, and T. Nagnibeda, Spectra of Schreier graphs of Grigorchuk's group and Schroedinger operators with aperiodic order, preprint, arXiv:1412.6822, 2014.

    [8]

    A. P. Gorjuškin, Imbedding of countable groups in $2$-generator simple groups, Mat. Zametki, 16 (1974), 231-235.

    [9]

    W. H. Gottschalk, Almost period points with respect to transformation semi-groups, Ann. of Math. (2), 47 (1946), 762-766.doi: 10.2307/1969233.

    [10]

    T. Giordano, I. F. Putnam and C. F. Skau, Full groups of Cantor minimal systems, Israel J. Math., 111 (1999), 285-320.doi: 10.1007/BF02810689.

    [11]

    R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939-985.

    [12]

    P. Hall, On the embedding of a group in a join of given groups, Collection of articles dedicated to the memory of Hanna Neumann, VIII, J. Austral. Math. Soc., 17 (1974), 434-495.doi: 10.1017/S1446788700018073.

    [13]

    K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math. (2), 178 (2013), 775-787.doi: 10.4007/annals.2013.178.2.7.

    [14]

    V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: Boundary and entropy, Ann. Probab., 11 (1983), 457-490.doi: 10.1214/aop/1176993497.

    [15]

    H. Matui, Some remarks on topological full groups of Cantor minimal systems, Internat. J. Math., 17 (2006), 231-251.doi: 10.1142/S0129167X06003448.

    [16]

    H. Matui, Some remarks on topological full groups of Cantor minimal systems II, Ergodic Theory Dynam. Systems, 33 (2013), 1542-1549.doi: 10.1017/S0143385712000399.

    [17]

    N. Matte Bon, Subshifts with slow complexity and simple groups with the Liouville property, Geom. Funct. Anal., 24 (2014), 1637-1659.doi: 10.1007/s00039-014-0293-4.

    [18]

    M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Mathematics, 1294, Springer-Verlag, Berlin, 1987.

    [19]

    P. E. Schupp, Embeddings into simple groups, J. London Math. Soc. (2), 13 (1976), 90-94.

    [20]

    E. K. van Douwen, Measures invariant under actions of $F_2$, Topology Appl., 34 (1990), 53-68.doi: 10.1016/0166-8641(90)90089-K.

    [21]

    Ya. Vorobets, On a substitution subshift related to the Grigorchuk group, Tr. Mat. Inst. Steklova, (Differentsialnye Uravneniya i Topologiya. II), 271 (2010), 319-334.doi: 10.1134/S0081543810040218.

    [22]

    Ya. Vorobets, Notes on the Schreier graphs of the Grigorchuk group, in Dynamical Systems and Group Actions, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012, 221-248.doi: 10.1090/conm/567/11250.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return