2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81

Partial hyperbolicity and foliations in $\mathbb{T}^3$

1. 

Centro de Matemática, Facultad de Ciencias, Universidad de la República, Igua 4225, Montevideo, 11400, Uruguay

Received  January 2013 Revised  June 2014 Published  June 2015

We prove that dynamical coherence is an open and closed property in the space of partially hyperbolic diffeomorphisms of $\mathbb{T}^3$ isotopic to Anosov. Moreover, we prove that strong partially hyperbolic diffeomorphisms of $\mathbb{T}^3$ are either dynamically coherent or have an invariant two-dimensional torus which is either contracting or repelling. We develop for this end some general results on codimension one foliations which may be of independent interest.
Citation: Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81
References:
[1]

P. Berger, Persistence of laminations,, Bull. Braz. Math. Soc. (N.S.), 41 (2010), 259.  doi: 10.1007/s00574-010-0013-0.  Google Scholar

[2]

C. Bonatti, L. Díaz and E. Pujals, A $C^1$ generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources,, Ann. of Math. (2), 158 (2003), 355.  doi: 10.4007/annals.2003.158.355.  Google Scholar

[3]

C. Bonatti, L. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective,, Encyclopaedia of Mathematical Sciences, (2005).   Google Scholar

[4]

C. Bonatti and J. Franks, A Hölder continuous vector field tangent to many foliations,, in Modern Dynamical Systems and Applications, (2004), 299.   Google Scholar

[5]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on $3$-manifolds,, Topology, 44 (2005), 475.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[6]

M. Brin, On dynamical coherence,, Ergodic Theory Dynam. Systems, 23 (2003), 395.  doi: 10.1017/S0143385702001499.  Google Scholar

[7]

M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group,, in Modern Dynamical Systems and Applications, (2004), 307.   Google Scholar

[8]

M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus,, J. Mod. Dyn., 3 (2009), 1.  doi: 10.3934/jmd.2009.3.1.  Google Scholar

[9]

M. Brin and A. Manning, Anosov diffeomorphisms with pinched spectrum,, in Dynamical Systems and Turbulence, 898 (1980), 48.   Google Scholar

[10]

M. Brin and Ja. B. Pesin, Partially hyperbolic dynamical systems,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170.   Google Scholar

[11]

D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups,, J. Mod. Dyn., 2 (2008), 541.  doi: 10.3934/jmd.2008.2.541.  Google Scholar

[12]

K. Burns, M. A. Rodriguez Hertz, F. Rodriguez Hertz, A. Talitskaya and R. Ures, Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center,, Discrete Contin. Dynam. Syst., 22 (2008), 75.  doi: 10.3934/dcds.2008.22.75.  Google Scholar

[13]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete Contin. Dynam. Syst., 22 (2008), 89.  doi: 10.3934/dcds.2008.22.89.  Google Scholar

[14]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems,, Ann. of Math. (2), 171 (2010), 451.  doi: 10.4007/annals.2010.171.451.  Google Scholar

[15]

A. Candel and L. Conlon, Foliations I and II,, Graduate Studies in Mathematics, (2003).  doi: 10.1090/gsm/060.  Google Scholar

[16]

S. Crovisier, Perturbation de la dynamique de difféomorphismes en topologie $C^1$,, Astérisque, 354 (2013).   Google Scholar

[17]

L. J. Díaz, E. R. Pujals and R. Ures, Partial hyperbolicity and robust transitivity,, Acta Math., 183 (1999), 1.  doi: 10.1007/BF02392945.  Google Scholar

[18]

D. Dolgopyat and A. Wilkinson, Stable accesibility is $C^1$-dense. Geometric methods in dynamics. II,, Astérisque, 287 (2003), 33.   Google Scholar

[19]

J. Franks, Anosov diffeomorphisms,, in 1970 Global Analysis (Proc. Sympos. Pure Math., (1968), 61.   Google Scholar

[20]

A. Hammerlindl, Leaf conjugacies in the torus,, Ergodic Th. and Dynam. Sys., 33 (2013), 896.  doi: 10.1017/etds.2012.171.  Google Scholar

[21]

A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in three-dimensional nilmanifolds,, J. London Math. Soc. (2), 89 (2014), 853.  doi: 10.1112/jlms/jdu013.  Google Scholar

[22]

G. Hector and U. Hirsch, Introduction to the Geometry of Foliations. Part B. Foliations of Codimension One,, Second Edition, (1987).  doi: 10.1007/978-3-322-90161-3.  Google Scholar

[23]

M. A. Rodriguez Hertz, F. Rodriguez Hertz and R. Ures, Tori with hyperbolic dynamics in 3-manifolds,, J. Mod. Dyn., 5 (2011), 185.  doi: 10.3934/jmd.2011.5.185.  Google Scholar

[24]

M. A. Rodriguez Hertz, F. Rodriguez Hertz and R. Ures, A non dynamically coherent example in $\mathbbT^3$,, in preparation., ().   Google Scholar

[25]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Math., (1977).   Google Scholar

[26]

R. Mañe, An ergodic closing lemma,, Ann. of Math. (2), 116 (1982), 503.  doi: 10.2307/2007021.  Google Scholar

[27]

K. Parwani, On $3$-manifolds that support partially hyperbolic diffeomorphisms,, Nonlinearity, 23 (2010), 589.  doi: 10.1088/0951-7715/23/3/009.  Google Scholar

[28]

J. F. Plante, Foliations of $3$-manifolds with solvable fundamental group,, Invent. Math., 51 (1979), 219.  doi: 10.1007/BF01389915.  Google Scholar

[29]

R. Potrie, Partial Hyperbolicity and Attracting Regions in 3-Dimensional Manifolds,, Ph.D. Thesis, (2012).   Google Scholar

[30]

I. Richards, On the classification of noncompact surfaces,, Trans. Amer. Math. Soc., 106 (1963), 259.  doi: 10.1090/S0002-9947-1963-0143186-0.  Google Scholar

[31]

V. V. Solodov, Components of topological foliations,, Math. USSR-Sbornik, 47 (1984), 329.  doi: 10.1070/SM1984v047n02ABEH002645.  Google Scholar

[32]

P. Walters, Anosov diffeomorphisms are topologically stable,, Topology, 9 (1970), 71.  doi: 10.1016/0040-9383(70)90051-0.  Google Scholar

show all references

References:
[1]

P. Berger, Persistence of laminations,, Bull. Braz. Math. Soc. (N.S.), 41 (2010), 259.  doi: 10.1007/s00574-010-0013-0.  Google Scholar

[2]

C. Bonatti, L. Díaz and E. Pujals, A $C^1$ generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources,, Ann. of Math. (2), 158 (2003), 355.  doi: 10.4007/annals.2003.158.355.  Google Scholar

[3]

C. Bonatti, L. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective,, Encyclopaedia of Mathematical Sciences, (2005).   Google Scholar

[4]

C. Bonatti and J. Franks, A Hölder continuous vector field tangent to many foliations,, in Modern Dynamical Systems and Applications, (2004), 299.   Google Scholar

[5]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on $3$-manifolds,, Topology, 44 (2005), 475.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[6]

M. Brin, On dynamical coherence,, Ergodic Theory Dynam. Systems, 23 (2003), 395.  doi: 10.1017/S0143385702001499.  Google Scholar

[7]

M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group,, in Modern Dynamical Systems and Applications, (2004), 307.   Google Scholar

[8]

M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus,, J. Mod. Dyn., 3 (2009), 1.  doi: 10.3934/jmd.2009.3.1.  Google Scholar

[9]

M. Brin and A. Manning, Anosov diffeomorphisms with pinched spectrum,, in Dynamical Systems and Turbulence, 898 (1980), 48.   Google Scholar

[10]

M. Brin and Ja. B. Pesin, Partially hyperbolic dynamical systems,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170.   Google Scholar

[11]

D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups,, J. Mod. Dyn., 2 (2008), 541.  doi: 10.3934/jmd.2008.2.541.  Google Scholar

[12]

K. Burns, M. A. Rodriguez Hertz, F. Rodriguez Hertz, A. Talitskaya and R. Ures, Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center,, Discrete Contin. Dynam. Syst., 22 (2008), 75.  doi: 10.3934/dcds.2008.22.75.  Google Scholar

[13]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete Contin. Dynam. Syst., 22 (2008), 89.  doi: 10.3934/dcds.2008.22.89.  Google Scholar

[14]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems,, Ann. of Math. (2), 171 (2010), 451.  doi: 10.4007/annals.2010.171.451.  Google Scholar

[15]

A. Candel and L. Conlon, Foliations I and II,, Graduate Studies in Mathematics, (2003).  doi: 10.1090/gsm/060.  Google Scholar

[16]

S. Crovisier, Perturbation de la dynamique de difféomorphismes en topologie $C^1$,, Astérisque, 354 (2013).   Google Scholar

[17]

L. J. Díaz, E. R. Pujals and R. Ures, Partial hyperbolicity and robust transitivity,, Acta Math., 183 (1999), 1.  doi: 10.1007/BF02392945.  Google Scholar

[18]

D. Dolgopyat and A. Wilkinson, Stable accesibility is $C^1$-dense. Geometric methods in dynamics. II,, Astérisque, 287 (2003), 33.   Google Scholar

[19]

J. Franks, Anosov diffeomorphisms,, in 1970 Global Analysis (Proc. Sympos. Pure Math., (1968), 61.   Google Scholar

[20]

A. Hammerlindl, Leaf conjugacies in the torus,, Ergodic Th. and Dynam. Sys., 33 (2013), 896.  doi: 10.1017/etds.2012.171.  Google Scholar

[21]

A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in three-dimensional nilmanifolds,, J. London Math. Soc. (2), 89 (2014), 853.  doi: 10.1112/jlms/jdu013.  Google Scholar

[22]

G. Hector and U. Hirsch, Introduction to the Geometry of Foliations. Part B. Foliations of Codimension One,, Second Edition, (1987).  doi: 10.1007/978-3-322-90161-3.  Google Scholar

[23]

M. A. Rodriguez Hertz, F. Rodriguez Hertz and R. Ures, Tori with hyperbolic dynamics in 3-manifolds,, J. Mod. Dyn., 5 (2011), 185.  doi: 10.3934/jmd.2011.5.185.  Google Scholar

[24]

M. A. Rodriguez Hertz, F. Rodriguez Hertz and R. Ures, A non dynamically coherent example in $\mathbbT^3$,, in preparation., ().   Google Scholar

[25]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Math., (1977).   Google Scholar

[26]

R. Mañe, An ergodic closing lemma,, Ann. of Math. (2), 116 (1982), 503.  doi: 10.2307/2007021.  Google Scholar

[27]

K. Parwani, On $3$-manifolds that support partially hyperbolic diffeomorphisms,, Nonlinearity, 23 (2010), 589.  doi: 10.1088/0951-7715/23/3/009.  Google Scholar

[28]

J. F. Plante, Foliations of $3$-manifolds with solvable fundamental group,, Invent. Math., 51 (1979), 219.  doi: 10.1007/BF01389915.  Google Scholar

[29]

R. Potrie, Partial Hyperbolicity and Attracting Regions in 3-Dimensional Manifolds,, Ph.D. Thesis, (2012).   Google Scholar

[30]

I. Richards, On the classification of noncompact surfaces,, Trans. Amer. Math. Soc., 106 (1963), 259.  doi: 10.1090/S0002-9947-1963-0143186-0.  Google Scholar

[31]

V. V. Solodov, Components of topological foliations,, Math. USSR-Sbornik, 47 (1984), 329.  doi: 10.1070/SM1984v047n02ABEH002645.  Google Scholar

[32]

P. Walters, Anosov diffeomorphisms are topologically stable,, Topology, 9 (1970), 71.  doi: 10.1016/0040-9383(70)90051-0.  Google Scholar

[1]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[2]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[3]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[4]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[5]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[6]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[9]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[10]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[11]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[16]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]