2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81

Partial hyperbolicity and foliations in $\mathbb{T}^3$

1. 

Centro de Matemática, Facultad de Ciencias, Universidad de la República, Igua 4225, Montevideo, 11400, Uruguay

Received  January 2013 Revised  June 2014 Published  June 2015

We prove that dynamical coherence is an open and closed property in the space of partially hyperbolic diffeomorphisms of $\mathbb{T}^3$ isotopic to Anosov. Moreover, we prove that strong partially hyperbolic diffeomorphisms of $\mathbb{T}^3$ are either dynamically coherent or have an invariant two-dimensional torus which is either contracting or repelling. We develop for this end some general results on codimension one foliations which may be of independent interest.
Citation: Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81
References:
[1]

P. Berger, Persistence of laminations, Bull. Braz. Math. Soc. (N.S.), 41 (2010), 259-319. doi: 10.1007/s00574-010-0013-0.

[2]

C. Bonatti, L. Díaz and E. Pujals, A $C^1$ generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2), 158 (2003), 355-418. doi: 10.4007/annals.2003.158.355.

[3]

C. Bonatti, L. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Encyclopaedia of Mathematical Sciences, 102, Mathematical Physics, III, Springer-Verlag, Berlin, 2005.

[4]

C. Bonatti and J. Franks, A Hölder continuous vector field tangent to many foliations, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 299-306.

[5]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on $3$-manifolds, Topology, 44 (2005), 475-508. doi: 10.1016/j.top.2004.10.009.

[6]

M. Brin, On dynamical coherence, Ergodic Theory Dynam. Systems, 23 (2003), 395-401. doi: 10.1017/S0143385702001499.

[7]

M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 307-312.

[8]

M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, J. Mod. Dyn., 3 (2009), 1-11. doi: 10.3934/jmd.2009.3.1.

[9]

M. Brin and A. Manning, Anosov diffeomorphisms with pinched spectrum, in Dynamical Systems and Turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Mathematics, 898, Springer, Berlin-New York, 1981, 48-53.

[10]

M. Brin and Ja. B. Pesin, Partially hyperbolic dynamical systems, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212.

[11]

D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups, J. Mod. Dyn., 2 (2008), 541-580. doi: 10.3934/jmd.2008.2.541.

[12]

K. Burns, M. A. Rodriguez Hertz, F. Rodriguez Hertz, A. Talitskaya and R. Ures, Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center, Discrete Contin. Dynam. Syst., 22 (2008), 75-88. doi: 10.3934/dcds.2008.22.75.

[13]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching, Discrete Contin. Dynam. Syst., 22 (2008), 89-100. doi: 10.3934/dcds.2008.22.89.

[14]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Ann. of Math. (2), 171 (2010), 451-489. doi: 10.4007/annals.2010.171.451.

[15]

A. Candel and L. Conlon, Foliations I and II, Graduate Studies in Mathematics, {60}, American Math. Society, Providence, RI, 2003. doi: 10.1090/gsm/060.

[16]

S. Crovisier, Perturbation de la dynamique de difféomorphismes en topologie $C^1$, Astérisque, 354 (2013).

[17]

L. J. Díaz, E. R. Pujals and R. Ures, Partial hyperbolicity and robust transitivity, Acta Math., 183 (1999), 1-43. doi: 10.1007/BF02392945.

[18]

D. Dolgopyat and A. Wilkinson, Stable accesibility is $C^1$-dense. Geometric methods in dynamics. II, Astérisque, 287 (2003), 33-60.

[19]

J. Franks, Anosov diffeomorphisms, in 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, RI, 1970, 61-93.

[20]

A. Hammerlindl, Leaf conjugacies in the torus, Ergodic Th. and Dynam. Sys., 33 (2013), 896-933. doi: 10.1017/etds.2012.171.

[21]

A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in three-dimensional nilmanifolds, J. London Math. Soc. (2), 89 (2014), 853-875. doi: 10.1112/jlms/jdu013.

[22]

G. Hector and U. Hirsch, Introduction to the Geometry of Foliations. Part B. Foliations of Codimension One, Second Edition, Aspects of Mathematics, E3, Friedr. Vieweg & Sohn, Braunschweig, 1987. doi: 10.1007/978-3-322-90161-3.

[23]

M. A. Rodriguez Hertz, F. Rodriguez Hertz and R. Ures, Tori with hyperbolic dynamics in 3-manifolds, J. Mod. Dyn., 5 (2011), 185-202. doi: 10.3934/jmd.2011.5.185.

[24]

M. A. Rodriguez Hertz, F. Rodriguez Hertz and R. Ures, A non dynamically coherent example in $\mathbbT^3$,, in preparation., (). 

[25]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977.

[26]

R. Mañe, An ergodic closing lemma, Ann. of Math. (2), 116 (1982), 503-540. doi: 10.2307/2007021.

[27]

K. Parwani, On $3$-manifolds that support partially hyperbolic diffeomorphisms, Nonlinearity, 23 (2010), 589-606. doi: 10.1088/0951-7715/23/3/009.

[28]

J. F. Plante, Foliations of $3$-manifolds with solvable fundamental group, Invent. Math., 51 (1979), 219-230. doi: 10.1007/BF01389915.

[29]

R. Potrie, Partial Hyperbolicity and Attracting Regions in 3-Dimensional Manifolds, Ph.D. Thesis, arXiv:1207.1822, 2012.

[30]

I. Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc., 106 (1963), 259-269. doi: 10.1090/S0002-9947-1963-0143186-0.

[31]

V. V. Solodov, Components of topological foliations, Math. USSR-Sbornik, 47 (1984), 329-343. doi: 10.1070/SM1984v047n02ABEH002645.

[32]

P. Walters, Anosov diffeomorphisms are topologically stable, Topology, 9 (1970), 71-78. doi: 10.1016/0040-9383(70)90051-0.

show all references

References:
[1]

P. Berger, Persistence of laminations, Bull. Braz. Math. Soc. (N.S.), 41 (2010), 259-319. doi: 10.1007/s00574-010-0013-0.

[2]

C. Bonatti, L. Díaz and E. Pujals, A $C^1$ generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2), 158 (2003), 355-418. doi: 10.4007/annals.2003.158.355.

[3]

C. Bonatti, L. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Encyclopaedia of Mathematical Sciences, 102, Mathematical Physics, III, Springer-Verlag, Berlin, 2005.

[4]

C. Bonatti and J. Franks, A Hölder continuous vector field tangent to many foliations, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 299-306.

[5]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on $3$-manifolds, Topology, 44 (2005), 475-508. doi: 10.1016/j.top.2004.10.009.

[6]

M. Brin, On dynamical coherence, Ergodic Theory Dynam. Systems, 23 (2003), 395-401. doi: 10.1017/S0143385702001499.

[7]

M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 307-312.

[8]

M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, J. Mod. Dyn., 3 (2009), 1-11. doi: 10.3934/jmd.2009.3.1.

[9]

M. Brin and A. Manning, Anosov diffeomorphisms with pinched spectrum, in Dynamical Systems and Turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Mathematics, 898, Springer, Berlin-New York, 1981, 48-53.

[10]

M. Brin and Ja. B. Pesin, Partially hyperbolic dynamical systems, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212.

[11]

D. Burago and S. Ivanov, Partially hyperbolic diffeomorphisms of 3-manifolds with abelian fundamental groups, J. Mod. Dyn., 2 (2008), 541-580. doi: 10.3934/jmd.2008.2.541.

[12]

K. Burns, M. A. Rodriguez Hertz, F. Rodriguez Hertz, A. Talitskaya and R. Ures, Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center, Discrete Contin. Dynam. Syst., 22 (2008), 75-88. doi: 10.3934/dcds.2008.22.75.

[13]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching, Discrete Contin. Dynam. Syst., 22 (2008), 89-100. doi: 10.3934/dcds.2008.22.89.

[14]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Ann. of Math. (2), 171 (2010), 451-489. doi: 10.4007/annals.2010.171.451.

[15]

A. Candel and L. Conlon, Foliations I and II, Graduate Studies in Mathematics, {60}, American Math. Society, Providence, RI, 2003. doi: 10.1090/gsm/060.

[16]

S. Crovisier, Perturbation de la dynamique de difféomorphismes en topologie $C^1$, Astérisque, 354 (2013).

[17]

L. J. Díaz, E. R. Pujals and R. Ures, Partial hyperbolicity and robust transitivity, Acta Math., 183 (1999), 1-43. doi: 10.1007/BF02392945.

[18]

D. Dolgopyat and A. Wilkinson, Stable accesibility is $C^1$-dense. Geometric methods in dynamics. II, Astérisque, 287 (2003), 33-60.

[19]

J. Franks, Anosov diffeomorphisms, in 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, RI, 1970, 61-93.

[20]

A. Hammerlindl, Leaf conjugacies in the torus, Ergodic Th. and Dynam. Sys., 33 (2013), 896-933. doi: 10.1017/etds.2012.171.

[21]

A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in three-dimensional nilmanifolds, J. London Math. Soc. (2), 89 (2014), 853-875. doi: 10.1112/jlms/jdu013.

[22]

G. Hector and U. Hirsch, Introduction to the Geometry of Foliations. Part B. Foliations of Codimension One, Second Edition, Aspects of Mathematics, E3, Friedr. Vieweg & Sohn, Braunschweig, 1987. doi: 10.1007/978-3-322-90161-3.

[23]

M. A. Rodriguez Hertz, F. Rodriguez Hertz and R. Ures, Tori with hyperbolic dynamics in 3-manifolds, J. Mod. Dyn., 5 (2011), 185-202. doi: 10.3934/jmd.2011.5.185.

[24]

M. A. Rodriguez Hertz, F. Rodriguez Hertz and R. Ures, A non dynamically coherent example in $\mathbbT^3$,, in preparation., (). 

[25]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977.

[26]

R. Mañe, An ergodic closing lemma, Ann. of Math. (2), 116 (1982), 503-540. doi: 10.2307/2007021.

[27]

K. Parwani, On $3$-manifolds that support partially hyperbolic diffeomorphisms, Nonlinearity, 23 (2010), 589-606. doi: 10.1088/0951-7715/23/3/009.

[28]

J. F. Plante, Foliations of $3$-manifolds with solvable fundamental group, Invent. Math., 51 (1979), 219-230. doi: 10.1007/BF01389915.

[29]

R. Potrie, Partial Hyperbolicity and Attracting Regions in 3-Dimensional Manifolds, Ph.D. Thesis, arXiv:1207.1822, 2012.

[30]

I. Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc., 106 (1963), 259-269. doi: 10.1090/S0002-9947-1963-0143186-0.

[31]

V. V. Solodov, Components of topological foliations, Math. USSR-Sbornik, 47 (1984), 329-343. doi: 10.1070/SM1984v047n02ABEH002645.

[32]

P. Walters, Anosov diffeomorphisms are topologically stable, Topology, 9 (1970), 71-78. doi: 10.1016/0040-9383(70)90051-0.

[1]

Wenjun Zhang, Bernd Krauskopf, Vivien Kirk. How to find a codimension-one heteroclinic cycle between two periodic orbits. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2825-2851. doi: 10.3934/dcds.2012.32.2825

[2]

Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819

[3]

Keith Burns, Amie Wilkinson. Dynamical coherence and center bunching. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 89-100. doi: 10.3934/dcds.2008.22.89

[4]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[5]

Michael L. Frankel, Victor Roytburd. Dynamical structure of one-phase model of solid combustion. Conference Publications, 2005, 2005 (Special) : 287-296. doi: 10.3934/proc.2005.2005.287

[6]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[7]

Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187

[8]

Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527

[9]

Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227

[10]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[11]

Anna-Lena Horlemann-Trautmann, Alessandro Neri. A complete classification of partial MDS (maximally recoverable) codes with one global parity. Advances in Mathematics of Communications, 2020, 14 (1) : 69-88. doi: 10.3934/amc.2020006

[12]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[13]

Michael Brin, Dmitri Burago, Sergey Ivanov. Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus. Journal of Modern Dynamics, 2009, 3 (1) : 1-11. doi: 10.3934/jmd.2009.3.1

[14]

Thierry Barbot, Carlos Maquera. On integrable codimension one Anosov actions of $\RR^k$. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 803-822. doi: 10.3934/dcds.2011.29.803

[15]

Boris Hasselblatt and Jorg Schmeling. Dimension product structure of hyperbolic sets. Electronic Research Announcements, 2004, 10: 88-96.

[16]

Andy Hammerlindl. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3641-3669. doi: 10.3934/dcds.2013.33.3641

[17]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[18]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[19]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5305-5319. doi: 10.3934/dcdsb.2020344

[20]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]