2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

Minimality of the Ehrenfest wind-tree model

1. 

Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France, France

Received  June 2015 Revised  March 2016 Published  June 2016

We consider aperiodic wind-tree models and show that for a generic (in the sense of Baire) configuration the wind-tree dynamics is minimal in almost all directions and has a dense set of periodic points.
Citation: Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209
References:
[1]

A. Avila and P. Hubert, Recurrence for the Wind-Tree Model,, Annales de l'Institut Henri Poincaré - Analyse non linéaire, ().   Google Scholar

[2]

A. S. Besicovitch, A problem on topological transformations of the plane. II., Proc. Cambridge Philos. Soc., 47 (1951), 38-45. doi: 10.1017/S0305004100026347.  Google Scholar

[3]

C. Bianca and L. Rondoni, The nonequilibrium Ehrenfest gas: A chaotic model with flat obstacles?, Chaos, 19 (2009), 013121, 10pp. doi: 10.1063/1.3085954.  Google Scholar

[4]

M. Boshernitzan, G. Galperin, T. Krüger and S. Troubetzkoy, Periodic billiard orbits are dense in rational polygons, Trans. Am. Math. Soc., 350 (1998), 3523-3535. doi: 10.1090/S0002-9947-98-02089-3.  Google Scholar

[5]

V. Delecroix, Divergent trajectories in the periodic wind-tree model, J. Mod. Dyn., 7 (2013), 1-29. doi: 10.3934/jmd.2013.7.1.  Google Scholar

[6]

V. Delecroix, P. Hubert and S. Lelièvre, Diffusion for the periodic wind-tree model, Ann. Sci. ENS, 47 (2014), 1085-1110.  Google Scholar

[7]

C. P. Dettmann, E. G. D. Cohen and H. van Beijeren, Statistical mechanics: Microscopic chaos from brownian motion?, Nature, 401 (1999), p875. doi: 10.1038/44759.  Google Scholar

[8]

P. and T. Ehrenfest, Begriffliche Grundlagen der statistischen Auffassung in der Mechanik, Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912) (in German, translated in:) The conceptual foundations of the statistical approach in mechanics, (trans. Moravicsik, M. J.), 10-13 Cornell University Press, Itacha NY (1959). Google Scholar

[9]

K. Frączek and C. Ulcigrai, Non-ergodic $\mathbbZ$-periodic billiards and infinite translation surfaces, Invent. Math., 197 (2014), 241-298. doi: 10.1007/s00222-013-0482-z.  Google Scholar

[10]

G. Gallavotti, Divergences and the approach to equilibrium in the Lorentz and the wind-tree models, Phys. Rev., 185 (1969), 308-322. doi: 10.1103/PhysRev.185.308.  Google Scholar

[11]

W. H. Gottschalk, Orbit-closure decompositions and almost periodic properties, Bull. AMS, 50 (1944), 915-919. doi: 10.1090/S0002-9904-1944-08262-1.  Google Scholar

[12]

J. Hardy and J. Weber, Diffusion in a periodic wind-tree model, J. Math. Phys., 21 (1980), 1802-1808. doi: 10.1063/1.524633.  Google Scholar

[13]

E. H. Hauge and E. G. D. Cohen, Normal and abnormal diffusion in Ehrenfest's wind-tree model, J. Math. Phys., 10 (1969), 397-414. Google Scholar

[14]

P. Hubert and B. Weiss, Ergodicity for infinite periodic translation surfaces, Compos. Math., 149 (2013), 1364-1380. doi: 10.1112/S0010437X12000887.  Google Scholar

[15]

P. Hooper, P. Hubert and B. Weiss, Dynamics on the infinite staircase, Discrete Contin. Dyn. Syst., 33 (2013), 4341-4347. doi: 10.3934/dcds.2013.33.4341.  Google Scholar

[16]

P. Hubert, Pascal, S. Lelièvre and S. Troubetzkoy, The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion, J. Reine Angew. Math., 656 (2011), 223-244. doi: 10.1515/CRELLE.2011.052.  Google Scholar

[17]

A. Katok and A. Zemlyakov, Topological transitivity of billiards in polygons, Math. Notes, 18 (1975), 291-300.  Google Scholar

[18]

M. Keane, Interval exchange transformations, Math. Z., 141 (1975), 25-31. doi: 10.1007/BF01236981.  Google Scholar

[19]

A. Málaga Sabogal, Étude D'une Famille de Transformations Préservant la Mesure de $\mathbbZ \times \mathbbT$, Thèse Paris 11, 2014. Google Scholar

[20]

S. Marmi, P. Moussa and Y.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. AMS, 18 (2005), 823-872. doi: 10.1090/S0894-0347-05-00490-X.  Google Scholar

[21]

H. Masur and S. Tabachnikov, Rational billiards and flat structures, Handbook of dynamical systems, North-Holland, Amsterdam, 1 (2002), 1015-1089. doi: 10.1016/S1874-575X(02)80015-7.  Google Scholar

[22]

D. Ralston and S. Troubetzkoy, Ergodic infinite group extensions of geodesic flows on translation surfaces, J. Mod. Dyn., 6 (2012), 477-497.  Google Scholar

[23]

S. Troubetzkoy, Approximation and billiards, Dynamical systems and Diophantine approximation, 173-185, Semin. Congr., 19, Soc. Math. France, Paris, 2009.  Google Scholar

[24]

S. Troubetzkoy, Typical recurrence for the Ehrenfest wind-tree model, J. Stat. Phys., 141 (2010), 60-67. doi: 10.1007/s10955-010-0026-5.  Google Scholar

[25]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Inventiones Mathematicae, 97 (1989), 553-583. doi: 10.1007/BF01388890.  Google Scholar

[26]

Y. Vorobets, Periodic geodesics on translation surfaces, Algebraic and topological dynamics, 205-258, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005 doi: 10.1090/conm/385/07199.  Google Scholar

[27]

H. Van Beyeren and E. H. Hauge, Abnormal diffusion in Ehrenfest's wind-tree model, Physics Letters A, 39 (1972), 397-398. doi: 10.1016/0375-9601(72)90112-0.  Google Scholar

[28]

W. Wood and F. Lado, Monte Carlo calculation of normal and abnormal diffusion in Ehrenfest's wind-tree model, J. Comp. Physics, 7 (1971), 528-546. doi: 10.1016/0021-9991(71)90109-4.  Google Scholar

show all references

References:
[1]

A. Avila and P. Hubert, Recurrence for the Wind-Tree Model,, Annales de l'Institut Henri Poincaré - Analyse non linéaire, ().   Google Scholar

[2]

A. S. Besicovitch, A problem on topological transformations of the plane. II., Proc. Cambridge Philos. Soc., 47 (1951), 38-45. doi: 10.1017/S0305004100026347.  Google Scholar

[3]

C. Bianca and L. Rondoni, The nonequilibrium Ehrenfest gas: A chaotic model with flat obstacles?, Chaos, 19 (2009), 013121, 10pp. doi: 10.1063/1.3085954.  Google Scholar

[4]

M. Boshernitzan, G. Galperin, T. Krüger and S. Troubetzkoy, Periodic billiard orbits are dense in rational polygons, Trans. Am. Math. Soc., 350 (1998), 3523-3535. doi: 10.1090/S0002-9947-98-02089-3.  Google Scholar

[5]

V. Delecroix, Divergent trajectories in the periodic wind-tree model, J. Mod. Dyn., 7 (2013), 1-29. doi: 10.3934/jmd.2013.7.1.  Google Scholar

[6]

V. Delecroix, P. Hubert and S. Lelièvre, Diffusion for the periodic wind-tree model, Ann. Sci. ENS, 47 (2014), 1085-1110.  Google Scholar

[7]

C. P. Dettmann, E. G. D. Cohen and H. van Beijeren, Statistical mechanics: Microscopic chaos from brownian motion?, Nature, 401 (1999), p875. doi: 10.1038/44759.  Google Scholar

[8]

P. and T. Ehrenfest, Begriffliche Grundlagen der statistischen Auffassung in der Mechanik, Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912) (in German, translated in:) The conceptual foundations of the statistical approach in mechanics, (trans. Moravicsik, M. J.), 10-13 Cornell University Press, Itacha NY (1959). Google Scholar

[9]

K. Frączek and C. Ulcigrai, Non-ergodic $\mathbbZ$-periodic billiards and infinite translation surfaces, Invent. Math., 197 (2014), 241-298. doi: 10.1007/s00222-013-0482-z.  Google Scholar

[10]

G. Gallavotti, Divergences and the approach to equilibrium in the Lorentz and the wind-tree models, Phys. Rev., 185 (1969), 308-322. doi: 10.1103/PhysRev.185.308.  Google Scholar

[11]

W. H. Gottschalk, Orbit-closure decompositions and almost periodic properties, Bull. AMS, 50 (1944), 915-919. doi: 10.1090/S0002-9904-1944-08262-1.  Google Scholar

[12]

J. Hardy and J. Weber, Diffusion in a periodic wind-tree model, J. Math. Phys., 21 (1980), 1802-1808. doi: 10.1063/1.524633.  Google Scholar

[13]

E. H. Hauge and E. G. D. Cohen, Normal and abnormal diffusion in Ehrenfest's wind-tree model, J. Math. Phys., 10 (1969), 397-414. Google Scholar

[14]

P. Hubert and B. Weiss, Ergodicity for infinite periodic translation surfaces, Compos. Math., 149 (2013), 1364-1380. doi: 10.1112/S0010437X12000887.  Google Scholar

[15]

P. Hooper, P. Hubert and B. Weiss, Dynamics on the infinite staircase, Discrete Contin. Dyn. Syst., 33 (2013), 4341-4347. doi: 10.3934/dcds.2013.33.4341.  Google Scholar

[16]

P. Hubert, Pascal, S. Lelièvre and S. Troubetzkoy, The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion, J. Reine Angew. Math., 656 (2011), 223-244. doi: 10.1515/CRELLE.2011.052.  Google Scholar

[17]

A. Katok and A. Zemlyakov, Topological transitivity of billiards in polygons, Math. Notes, 18 (1975), 291-300.  Google Scholar

[18]

M. Keane, Interval exchange transformations, Math. Z., 141 (1975), 25-31. doi: 10.1007/BF01236981.  Google Scholar

[19]

A. Málaga Sabogal, Étude D'une Famille de Transformations Préservant la Mesure de $\mathbbZ \times \mathbbT$, Thèse Paris 11, 2014. Google Scholar

[20]

S. Marmi, P. Moussa and Y.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. AMS, 18 (2005), 823-872. doi: 10.1090/S0894-0347-05-00490-X.  Google Scholar

[21]

H. Masur and S. Tabachnikov, Rational billiards and flat structures, Handbook of dynamical systems, North-Holland, Amsterdam, 1 (2002), 1015-1089. doi: 10.1016/S1874-575X(02)80015-7.  Google Scholar

[22]

D. Ralston and S. Troubetzkoy, Ergodic infinite group extensions of geodesic flows on translation surfaces, J. Mod. Dyn., 6 (2012), 477-497.  Google Scholar

[23]

S. Troubetzkoy, Approximation and billiards, Dynamical systems and Diophantine approximation, 173-185, Semin. Congr., 19, Soc. Math. France, Paris, 2009.  Google Scholar

[24]

S. Troubetzkoy, Typical recurrence for the Ehrenfest wind-tree model, J. Stat. Phys., 141 (2010), 60-67. doi: 10.1007/s10955-010-0026-5.  Google Scholar

[25]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Inventiones Mathematicae, 97 (1989), 553-583. doi: 10.1007/BF01388890.  Google Scholar

[26]

Y. Vorobets, Periodic geodesics on translation surfaces, Algebraic and topological dynamics, 205-258, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005 doi: 10.1090/conm/385/07199.  Google Scholar

[27]

H. Van Beyeren and E. H. Hauge, Abnormal diffusion in Ehrenfest's wind-tree model, Physics Letters A, 39 (1972), 397-398. doi: 10.1016/0375-9601(72)90112-0.  Google Scholar

[28]

W. Wood and F. Lado, Monte Carlo calculation of normal and abnormal diffusion in Ehrenfest's wind-tree model, J. Comp. Physics, 7 (1971), 528-546. doi: 10.1016/0021-9991(71)90109-4.  Google Scholar

[1]

Vincent Delecroix. Divergent trajectories in the periodic wind-tree model. Journal of Modern Dynamics, 2013, 7 (1) : 1-29. doi: 10.3934/jmd.2013.7.1

[2]

Peng Sun. Minimality and gluing orbit property. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162

[3]

Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218

[4]

Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral six-body problem. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1903-1922. doi: 10.3934/dcds.2017080

[5]

Xueting Tian, Shirou Wang, Xiaodong Wang. Intermediate Lyapunov exponents for systems with periodic orbit gluing property. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1019-1032. doi: 10.3934/dcds.2019042

[6]

Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010

[7]

Tatiane C. Batista, Juliano S. Gonschorowski, Fábio A. Tal. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3315-3326. doi: 10.3934/dcds.2015.35.3315

[8]

Peter Giesl. On a matrix-valued PDE characterizing a contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4839-4865. doi: 10.3934/dcdsb.2020315

[9]

Peter Giesl. Necessary condition for the basin of attraction of a periodic orbit in non-smooth periodic systems. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 355-373. doi: 10.3934/dcds.2007.18.355

[10]

Mark Lewis, Daniel Offin, Pietro-Luciano Buono, Mitchell Kovacic. Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses. Discrete & Continuous Dynamical Systems, 2013, 33 (3) : 1137-1155. doi: 10.3934/dcds.2013.33.1137

[11]

M. Ollé, J.R. Pacha, J. Villanueva. Dynamics close to a non semi-simple 1:-1 resonant periodic orbit. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 799-816. doi: 10.3934/dcdsb.2005.5.799

[12]

Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511

[13]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[14]

Gabriel Núñez, Jana Rodriguez Hertz. Minimality and stable Bernoulliness in dimension 3. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1879-1887. doi: 10.3934/dcds.2020097

[15]

Anatoly Abrashkin. Wind generated equatorial Gerstner-type waves. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4443-4453. doi: 10.3934/dcds.2019181

[16]

Julien Chambarel, Christian Kharif, Olivier Kimmoun. Focusing wave group in shallow water in the presence of wind. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 773-782. doi: 10.3934/dcdsb.2010.13.773

[17]

Hongjun Gao, Jinqiao Duan. Dynamics of the thermohaline circulation under wind forcing. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 205-219. doi: 10.3934/dcdsb.2002.2.205

[18]

Nikolai Botkin, Varvara Turova, Barzin Hosseini, Johannes Diepolder, Florian Holzapfel. Tracking aircraft trajectories in the presence of wind disturbances. Mathematical Control & Related Fields, 2021, 11 (3) : 499-520. doi: 10.3934/mcrf.2021010

[19]

Piotr Oprocha. Double minimality, entropy and disjointness with all minimal systems. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 263-275. doi: 10.3934/dcds.2019011

[20]

Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (116)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]