2016, 10: 229-254. doi: 10.3934/jmd.2016.10.229

Effective equidistribution of translates of maximal horospherical measures in the space of lattices

1. 

Department of Mathematics, University of Texas, 1 University Station, Austin, TX 78712, United States

2. 

Department of Mathematics, University of Michigan, 530 Church St., Ann Arbor, MI 48109, United States

3. 

Department of Mathematics and Computer Science, Wesleyan University, 265 Church Street, Middletown, CT 06459, United States

Received  June 2015 Revised  February 2016 Published  July 2016

Recently Mohammadi and Salehi-Golsefidy gave necessary and sufficient conditions under which certain translates of homogeneous measures converge, and they determined the limiting measures in the cases of convergence. The class of measures they considered includes the maximal horospherical measures. In this paper we prove the corresponding effective equidistribution results in the space of unimodular lattices. We also prove the corresponding results for probability measures with absolutely continuous densities in rank two and three. Then we address the problem of determining the error terms in two counting problems also considered by Mohammadi and Salehi-Golsefidy. In the first problem, we determine an error term for counting the number of lifts of a closed horosphere from an irreducible, finite-volume quotient of the space of positive definite $n\times n$ matrices of determinant one that intersect a ball with large radius. In the second problem, we determine a logarithmic error term for the Manin conjecture of a flag variety over $\mathbb{Q}$.
Citation: Kathryn Dabbs, Michael Kelly, Han Li. Effective equidistribution of translates of maximal horospherical measures in the space of lattices. Journal of Modern Dynamics, 2016, 10: 229-254. doi: 10.3934/jmd.2016.10.229
References:
[1]

V. Bernik, D. Kleinbock and G. A. Margulis, Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions,, Internat. Math. Res. Notices, (2001), 453.  doi: 10.1155/S1073792801000241.  Google Scholar

[2]

A. Borel and J. Tits, Groupes réductifs,, Inst. Hautes Études Sci. Publ. Math., 27 (1965), 55.   Google Scholar

[3]

S. G. Dani, Invariant measures of horospherical flows on noncompact homogeneous spaces,, Invent. Math., 47 (1978), 101.  doi: 10.1007/BF01578067.  Google Scholar

[4]

W. Duke, Z. Rudnick and P. Sarnak, Density of integer points on affine homogeneous varieties,, Duke Math. J., 71 (1993), 143.  doi: 10.1215/S0012-7094-93-07107-4.  Google Scholar

[5]

A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups,, Duke Math. J., 71 (1993), 181.  doi: 10.1215/S0012-7094-93-07108-6.  Google Scholar

[6]

J. Franke, Y. I. Manin and Y. Tschinkel, Rational points of bounded height on Fano varieties,, Invent. Math., 95 (1989), 421.  doi: 10.1007/BF01393904.  Google Scholar

[7]

J. E. Humphreys, Linear Algebraic Groups,, Graduate Texts in Mathematics, (1975).   Google Scholar

[8]

D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds,, Ann. of Math. (2), 148 (1998), 339.  doi: 10.2307/120997.  Google Scholar

[9]

D. Y. Kleinbock and G. A. Margulis, On effective equidistribution of expanding translates of certain orbits in the space of lattices,, in Number Theory, (2012), 385.  doi: 10.1007/978-1-4614-1260-1_18.  Google Scholar

[10]

D. Kleinbock, R. Shi and B. Weiss, Pointwise equidistribution with an error rate and with respect to unbounded functions,, , (2015).   Google Scholar

[11]

D. Kleinbock and B. Weiss, Dirichlet's theorem on Diophantine approximation and homogeneous flows,, J. Mod. Dyn., 2 (2008), 43.   Google Scholar

[12]

G. A. Margulis, On some aspects of the theory of Anosov systems,, Springer Monographs in Mathematics, (2004).  doi: 10.1007/978-3-662-09070-1.  Google Scholar

[13]

A. Mohammadi and A. S. Golsefidy, Translate of horospheres and counting problems,, Amer. J. Math., 136 (2014), 1301.  doi: 10.1353/ajm.2014.0037.  Google Scholar

[14]

H. Oh, Orbital counting via mixing and unipotent flows,, in Homogeneous Flows, (2010), 339.   Google Scholar

[15]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series,, Comm. Pure Appl. Math., 34 (1981), 719.  doi: 10.1002/cpa.3160340602.  Google Scholar

[16]

A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series,, J. Indian Math. Soc. (N.S.), 20 (1956), 47.   Google Scholar

[17]

N. Shah and B. Weiss, On actions of epimorphic subgroups on homogeneous spaces,, Ergodic Theory Dynam. Systems, 20 (2000), 567.  doi: 10.1017/S0143385700000298.  Google Scholar

[18]

N. A. Shah, Limit distributions of expanding translates of certain orbits on homogeneous spaces,, Proc. Indian Acad. Sci. Math. Sci., 106 (1996), 105.  doi: 10.1007/BF02837164.  Google Scholar

[19]

R. Shi, Expanding cone and applications to homogeneous dynamics,, , (2015).   Google Scholar

[20]

D. Zagier, Eisenstein series and the Riemann zeta-function,, in Automorphic Forms, (1981), 275.   Google Scholar

show all references

References:
[1]

V. Bernik, D. Kleinbock and G. A. Margulis, Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions,, Internat. Math. Res. Notices, (2001), 453.  doi: 10.1155/S1073792801000241.  Google Scholar

[2]

A. Borel and J. Tits, Groupes réductifs,, Inst. Hautes Études Sci. Publ. Math., 27 (1965), 55.   Google Scholar

[3]

S. G. Dani, Invariant measures of horospherical flows on noncompact homogeneous spaces,, Invent. Math., 47 (1978), 101.  doi: 10.1007/BF01578067.  Google Scholar

[4]

W. Duke, Z. Rudnick and P. Sarnak, Density of integer points on affine homogeneous varieties,, Duke Math. J., 71 (1993), 143.  doi: 10.1215/S0012-7094-93-07107-4.  Google Scholar

[5]

A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups,, Duke Math. J., 71 (1993), 181.  doi: 10.1215/S0012-7094-93-07108-6.  Google Scholar

[6]

J. Franke, Y. I. Manin and Y. Tschinkel, Rational points of bounded height on Fano varieties,, Invent. Math., 95 (1989), 421.  doi: 10.1007/BF01393904.  Google Scholar

[7]

J. E. Humphreys, Linear Algebraic Groups,, Graduate Texts in Mathematics, (1975).   Google Scholar

[8]

D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds,, Ann. of Math. (2), 148 (1998), 339.  doi: 10.2307/120997.  Google Scholar

[9]

D. Y. Kleinbock and G. A. Margulis, On effective equidistribution of expanding translates of certain orbits in the space of lattices,, in Number Theory, (2012), 385.  doi: 10.1007/978-1-4614-1260-1_18.  Google Scholar

[10]

D. Kleinbock, R. Shi and B. Weiss, Pointwise equidistribution with an error rate and with respect to unbounded functions,, , (2015).   Google Scholar

[11]

D. Kleinbock and B. Weiss, Dirichlet's theorem on Diophantine approximation and homogeneous flows,, J. Mod. Dyn., 2 (2008), 43.   Google Scholar

[12]

G. A. Margulis, On some aspects of the theory of Anosov systems,, Springer Monographs in Mathematics, (2004).  doi: 10.1007/978-3-662-09070-1.  Google Scholar

[13]

A. Mohammadi and A. S. Golsefidy, Translate of horospheres and counting problems,, Amer. J. Math., 136 (2014), 1301.  doi: 10.1353/ajm.2014.0037.  Google Scholar

[14]

H. Oh, Orbital counting via mixing and unipotent flows,, in Homogeneous Flows, (2010), 339.   Google Scholar

[15]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series,, Comm. Pure Appl. Math., 34 (1981), 719.  doi: 10.1002/cpa.3160340602.  Google Scholar

[16]

A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series,, J. Indian Math. Soc. (N.S.), 20 (1956), 47.   Google Scholar

[17]

N. Shah and B. Weiss, On actions of epimorphic subgroups on homogeneous spaces,, Ergodic Theory Dynam. Systems, 20 (2000), 567.  doi: 10.1017/S0143385700000298.  Google Scholar

[18]

N. A. Shah, Limit distributions of expanding translates of certain orbits on homogeneous spaces,, Proc. Indian Acad. Sci. Math. Sci., 106 (1996), 105.  doi: 10.1007/BF02837164.  Google Scholar

[19]

R. Shi, Expanding cone and applications to homogeneous dynamics,, , (2015).   Google Scholar

[20]

D. Zagier, Eisenstein series and the Riemann zeta-function,, in Automorphic Forms, (1981), 275.   Google Scholar

[1]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[4]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[5]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[6]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[7]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[8]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[9]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[10]

Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169

[11]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[12]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[13]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[14]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[15]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[16]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[17]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[18]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[19]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[20]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]