2016, 10: 23-32. doi: 10.3934/jmd.2016.10.23

Jonquières maps and $SL(2;\mathbb{C})$-cocycles

1. 

Institut de Mathématiques de Jussieu- Paris Rive Gauche, UMR 7586, Université Paris Diderot, Bâtiment Sophie Germain, Case 7012, 75205 Paris Cedex 13, France

Received  April 2014 Published  February 2016

We started the study of the family of birational maps $(f_{\alpha,\beta})$ of $\mathbb{P}^2_\mathbb{C}$ in [12]. For ``$(\alpha,\beta)$ well chosen'' of modulus $1$, the centraliser of $f_{\alpha,\beta}$ is trivial, the topological entropy of $f_{\alpha,\beta}$ is $0$, and there exist two domains of linearisation: in the first one the closure of the orbit of a point is a torus, in the other one the closure of the orbit of a point is the union of two circles. On $\mathbb{P}^1_\mathbb{C}\times \mathbb{P}^1_\mathbb{C}$, any $f_{\alpha,\beta}$ can be viewed as a cocyle; using recent results about $\mathrm{SL}(2;\mathbb{C})$-cocycles ([1]), we determine the Lyapunov exponent of the cocyle associated to $f_{\alpha,\beta}$.
Citation: Julie Déserti. Jonquières maps and $SL(2;\mathbb{C})$-cocycles. Journal of Modern Dynamics, 2016, 10: 23-32. doi: 10.3934/jmd.2016.10.23
References:
[1]

A. Avila, Global theory of one-frequency Schrödinger operators,, Acta Math., 215 (2015), 1.  doi: 10.1007/s11511-015-0128-7.  Google Scholar

[2]

A. Avila, S. Jitomirskaya and C. Sadel, Complex one-frequency cocycles,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1915.  doi: 10.4171/JEMS/479.  Google Scholar

[3]

A. Beauville, Complex Algebraic Surfaces,, Translated from the 1978 French original by R. Barlow, (1978).  doi: 10.1017/CBO9780511623936.  Google Scholar

[4]

E. Bedford and K. Kim, Periodicities in linear fractional recurrences: Degree growth of birational surface maps,, Michigan Math. J., 54 (2006), 647.  doi: 10.1307/mmj/1163789919.  Google Scholar

[5]

E. Bedford and K. Kim, Dynamics of rational surface automorphisms: Linear fractional recurrences,, J. Geom. Anal., 19 (2009), 553.  doi: 10.1007/s12220-009-9077-8.  Google Scholar

[6]

E. Bedford and K. Kim, Continuous families of rational surface automorphisms with positive entropy,, Math. Ann., 348 (2010), 667.  doi: 10.1007/s00208-010-0498-2.  Google Scholar

[7]

E. Bedford and K. Kim, Dynamics of rational surface automorphisms: Rotations domains,, Amer. J. Math., 134 (2012), 379.  doi: 10.1353/ajm.2012.0015.  Google Scholar

[8]

J. Blanc and J. Déserti, Degree growth of birational maps of the plane,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14 (2015), 507.   Google Scholar

[9]

S. Cantat, Dynamique des automorphismes des surfaces projectives complexes,, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 901.  doi: 10.1016/S0764-4442(99)80294-8.  Google Scholar

[10]

S. Cantat, Sur les groupes de transformations birationnelles des surfaces,, Ann. of Math. (2), 174 (2011), 299.  doi: 10.4007/annals.2011.174.1.8.  Google Scholar

[11]

D. Cerveau and J. Déserti, Centralisateurs dans le groupe de Jonquières,, Michigan Math. J., 61 (2012), 763.  doi: 10.1307/mmj/1353098512.  Google Scholar

[12]

J. Déserti, Expériences sur certaines transformations birationnelles quadratiques,, Nonlinearity, 21 (2008), 1367.  doi: 10.1088/0951-7715/21/6/013.  Google Scholar

[13]

J. Déserti and J. Grivaux, Automorphisms of rational surfaces with positive entropy,, Indiana Univ. Math. J., 60 (2011), 1589.  doi: 10.1512/iumj.2011.60.4427.  Google Scholar

[14]

J. Diller, Cremona transformations, surface automorphisms, and plane cubics,, With an appendix by I. Dolgachev, 60 (2011), 409.  doi: 10.1307/mmj/1310667983.  Google Scholar

[15]

J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces,, Amer. J. Math., 123 (2001), 1135.  doi: 10.1353/ajm.2001.0038.  Google Scholar

[16]

M. H. Gizatullin, Rational $G$-surfaces,, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 110.   Google Scholar

[17]

M. Gromov, On the entropy of holomorphic maps,, Enseign. Math. (2), 49 (2003), 217.   Google Scholar

[18]

C. T. McMullen, Dynamics on blowups of the projective plane,, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 49.  doi: 10.1007/s10240-007-0004-x.  Google Scholar

[19]

H. Rüssmann, Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition,, Ergodic Theory Dynam. Systems, 22 (2002), 1551.  doi: 10.1017/S0143385702000974.  Google Scholar

[20]

Y. Yomdin, Volume growth and entropy,, Israel J. Math., 57 (1987), 285.  doi: 10.1007/BF02766215.  Google Scholar

show all references

References:
[1]

A. Avila, Global theory of one-frequency Schrödinger operators,, Acta Math., 215 (2015), 1.  doi: 10.1007/s11511-015-0128-7.  Google Scholar

[2]

A. Avila, S. Jitomirskaya and C. Sadel, Complex one-frequency cocycles,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1915.  doi: 10.4171/JEMS/479.  Google Scholar

[3]

A. Beauville, Complex Algebraic Surfaces,, Translated from the 1978 French original by R. Barlow, (1978).  doi: 10.1017/CBO9780511623936.  Google Scholar

[4]

E. Bedford and K. Kim, Periodicities in linear fractional recurrences: Degree growth of birational surface maps,, Michigan Math. J., 54 (2006), 647.  doi: 10.1307/mmj/1163789919.  Google Scholar

[5]

E. Bedford and K. Kim, Dynamics of rational surface automorphisms: Linear fractional recurrences,, J. Geom. Anal., 19 (2009), 553.  doi: 10.1007/s12220-009-9077-8.  Google Scholar

[6]

E. Bedford and K. Kim, Continuous families of rational surface automorphisms with positive entropy,, Math. Ann., 348 (2010), 667.  doi: 10.1007/s00208-010-0498-2.  Google Scholar

[7]

E. Bedford and K. Kim, Dynamics of rational surface automorphisms: Rotations domains,, Amer. J. Math., 134 (2012), 379.  doi: 10.1353/ajm.2012.0015.  Google Scholar

[8]

J. Blanc and J. Déserti, Degree growth of birational maps of the plane,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14 (2015), 507.   Google Scholar

[9]

S. Cantat, Dynamique des automorphismes des surfaces projectives complexes,, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 901.  doi: 10.1016/S0764-4442(99)80294-8.  Google Scholar

[10]

S. Cantat, Sur les groupes de transformations birationnelles des surfaces,, Ann. of Math. (2), 174 (2011), 299.  doi: 10.4007/annals.2011.174.1.8.  Google Scholar

[11]

D. Cerveau and J. Déserti, Centralisateurs dans le groupe de Jonquières,, Michigan Math. J., 61 (2012), 763.  doi: 10.1307/mmj/1353098512.  Google Scholar

[12]

J. Déserti, Expériences sur certaines transformations birationnelles quadratiques,, Nonlinearity, 21 (2008), 1367.  doi: 10.1088/0951-7715/21/6/013.  Google Scholar

[13]

J. Déserti and J. Grivaux, Automorphisms of rational surfaces with positive entropy,, Indiana Univ. Math. J., 60 (2011), 1589.  doi: 10.1512/iumj.2011.60.4427.  Google Scholar

[14]

J. Diller, Cremona transformations, surface automorphisms, and plane cubics,, With an appendix by I. Dolgachev, 60 (2011), 409.  doi: 10.1307/mmj/1310667983.  Google Scholar

[15]

J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces,, Amer. J. Math., 123 (2001), 1135.  doi: 10.1353/ajm.2001.0038.  Google Scholar

[16]

M. H. Gizatullin, Rational $G$-surfaces,, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 110.   Google Scholar

[17]

M. Gromov, On the entropy of holomorphic maps,, Enseign. Math. (2), 49 (2003), 217.   Google Scholar

[18]

C. T. McMullen, Dynamics on blowups of the projective plane,, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 49.  doi: 10.1007/s10240-007-0004-x.  Google Scholar

[19]

H. Rüssmann, Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition,, Ergodic Theory Dynam. Systems, 22 (2002), 1551.  doi: 10.1017/S0143385702000974.  Google Scholar

[20]

Y. Yomdin, Volume growth and entropy,, Israel J. Math., 57 (1987), 285.  doi: 10.1007/BF02766215.  Google Scholar

[1]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[2]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[3]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[4]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[5]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[6]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[7]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[8]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[9]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[10]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[11]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020121

[12]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[13]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[14]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[15]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[16]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[17]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[18]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[19]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[20]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]