-
Previous Article
Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds
- JMD Home
- This Volume
-
Next Article
Smooth diffeomorphisms with homogeneous spectrum and disjointness of convolutions
The automorphism group of a minimal shift of stretched exponential growth
1. | Department of Mathematics, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, United States |
2. | Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, United States |
References:
[1] |
H. Bass, The degree of polynomial growth of finitely generated nilpotent groups,, Proc. London Math. Soc. (3), 25 (1972), 603.
|
[2] |
M. Boyle, D. Lind and D. Rudolph, The automorphism group of a shift of finite type,, Trans. Amer. Math. Soc., 306 (1988), 71.
doi: 10.1090/S0002-9947-1988-0927684-2. |
[3] |
E. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts, using atypical equivalence classes,, Discrete Anal., (2016), 1.
doi: 10.19086/da.611. |
[4] |
V. Cyr and B. Kra, The automorphism group of a shift of subquadratic growth,, Proc. Amer. Math. Soc., 144 (2016), 613.
doi: 10.1090/proc12719. |
[5] |
V. Cyr and B. Kra, The automorphism group of a shift of linear growth: beyond transitivity,, Forum Math. Sigma, 3 (2015).
doi: 10.1017/fms.2015.3. |
[6] |
P. de la Harpe, Topics in Geometric Group Theory,, Chicago Lectures in Mathematics, (2000).
|
[7] |
S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of low complexity subshifts,, Ergodic Theory Dynam. Systems, 36 (2016), 64.
doi: 10.1017/etds.2015.70. |
[8] |
S. Donoso, F. Durand, A. Maass and S. Petite, Private, communication., (). Google Scholar |
[9] |
M. Gromov, Groups of polynomial growth and expanding maps,, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53.
|
[10] |
Y. Guivarc'h, Groupes de Lie á croissance polynomiale,, C. R. Acad. Sci. Paris Sér. A-B, 272 (1971).
|
[11] |
G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system,, Math. Systems Theory, 3 (1969), 320.
doi: 10.1007/BF01691062. |
[12] |
M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories,, Amer. J. Math., 62 (1940), 1.
doi: 10.2307/2371431. |
[13] |
K. H. Kim and F. W. Roush, On the automorphism groups of subshifts,, Pure Math. Appl. Ser. B, 1 (1990), 203.
|
[14] |
V. Salo, Toeplitz subshift whose automorphism group is not finitely generated,, Colloquium Mathematicum, (2016).
doi: 10.4064/cm6463-2-2016. |
[15] |
V. Salo and I. Törmä, Block maps between primitive uniform and Pisot substitutions,, Ergodic Theory and Dynam. Systems, 35 (2015), 2292.
doi: 10.1017/etds.2014.29. |
[16] |
L. van den Dries and A. Wilkie, Gromov's theorem on groups of polynomial growth and elementary logic,, J. Algebra, 89 (1984), 349.
doi: 10.1016/0021-8693(84)90223-0. |
show all references
References:
[1] |
H. Bass, The degree of polynomial growth of finitely generated nilpotent groups,, Proc. London Math. Soc. (3), 25 (1972), 603.
|
[2] |
M. Boyle, D. Lind and D. Rudolph, The automorphism group of a shift of finite type,, Trans. Amer. Math. Soc., 306 (1988), 71.
doi: 10.1090/S0002-9947-1988-0927684-2. |
[3] |
E. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts, using atypical equivalence classes,, Discrete Anal., (2016), 1.
doi: 10.19086/da.611. |
[4] |
V. Cyr and B. Kra, The automorphism group of a shift of subquadratic growth,, Proc. Amer. Math. Soc., 144 (2016), 613.
doi: 10.1090/proc12719. |
[5] |
V. Cyr and B. Kra, The automorphism group of a shift of linear growth: beyond transitivity,, Forum Math. Sigma, 3 (2015).
doi: 10.1017/fms.2015.3. |
[6] |
P. de la Harpe, Topics in Geometric Group Theory,, Chicago Lectures in Mathematics, (2000).
|
[7] |
S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of low complexity subshifts,, Ergodic Theory Dynam. Systems, 36 (2016), 64.
doi: 10.1017/etds.2015.70. |
[8] |
S. Donoso, F. Durand, A. Maass and S. Petite, Private, communication., (). Google Scholar |
[9] |
M. Gromov, Groups of polynomial growth and expanding maps,, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53.
|
[10] |
Y. Guivarc'h, Groupes de Lie á croissance polynomiale,, C. R. Acad. Sci. Paris Sér. A-B, 272 (1971).
|
[11] |
G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system,, Math. Systems Theory, 3 (1969), 320.
doi: 10.1007/BF01691062. |
[12] |
M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories,, Amer. J. Math., 62 (1940), 1.
doi: 10.2307/2371431. |
[13] |
K. H. Kim and F. W. Roush, On the automorphism groups of subshifts,, Pure Math. Appl. Ser. B, 1 (1990), 203.
|
[14] |
V. Salo, Toeplitz subshift whose automorphism group is not finitely generated,, Colloquium Mathematicum, (2016).
doi: 10.4064/cm6463-2-2016. |
[15] |
V. Salo and I. Törmä, Block maps between primitive uniform and Pisot substitutions,, Ergodic Theory and Dynam. Systems, 35 (2015), 2292.
doi: 10.1017/etds.2014.29. |
[16] |
L. van den Dries and A. Wilkie, Gromov's theorem on groups of polynomial growth and elementary logic,, J. Algebra, 89 (1984), 349.
doi: 10.1016/0021-8693(84)90223-0. |
[1] |
Silvère Gangloff, Benjamin Hellouin de Menibus. Effect of quantified irreducibility on the computability of subshift entropy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1975-2000. doi: 10.3934/dcds.2019083 |
[2] |
Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195 |
[3] |
Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237 |
[4] |
Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018 |
[5] |
Valentin Afraimovich, Maurice Courbage, Lev Glebsky. Directional complexity and entropy for lift mappings. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3385-3401. doi: 10.3934/dcdsb.2015.20.3385 |
[6] |
Erik M. Bollt, Joseph D. Skufca, Stephen J . McGregor. Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences & Engineering, 2009, 6 (1) : 1-25. doi: 10.3934/mbe.2009.6.1 |
[7] |
Dino Festi, Alice Garbagnati, Bert Van Geemen, Ronald Van Luijk. The Cayley-Oguiso automorphism of positive entropy on a K3 surface. Journal of Modern Dynamics, 2013, 7 (1) : 75-97. doi: 10.3934/jmd.2013.7.75 |
[8] |
Jean-Paul Thouvenot. The work of Lewis Bowen on the entropy theory of non-amenable group actions. Journal of Modern Dynamics, 2019, 15: 133-141. doi: 10.3934/jmd.2019016 |
[9] |
Paulina Grzegorek, Michal Kupsa. Exponential return times in a zero-entropy process. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1339-1361. doi: 10.3934/cpaa.2012.11.1339 |
[10] |
Bin Li, Hai Huyen Dam, Antonio Cantoni. A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 297-304. doi: 10.3934/naco.2016012 |
[11] |
A. Crannell. A chaotic, non-mixing subshift. Conference Publications, 1998, 1998 (Special) : 195-202. doi: 10.3934/proc.1998.1998.195 |
[12] |
Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127 |
[13] |
L'ubomír Snoha, Vladimír Špitalský. Recurrence equals uniform recurrence does not imply zero entropy for triangular maps of the square. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 821-835. doi: 10.3934/dcds.2006.14.821 |
[14] |
Elon Lindenstrauss. Pointwise theorems for amenable groups. Electronic Research Announcements, 1999, 5: 82-90. |
[15] |
Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015 |
[16] |
Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113 |
[17] |
Arvind Ayyer, Carlangelo Liverani, Mikko Stenlund. Quenched CLT for random toral automorphism. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 331-348. doi: 10.3934/dcds.2009.24.331 |
[18] |
Fernando Alcalde Cuesta, Ana Rechtman. Minimal Følner foliations are amenable. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 685-707. doi: 10.3934/dcds.2011.31.685 |
[19] |
Stefano Galatolo. Orbit complexity and data compression. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477 |
[20] |
Valentin Afraimovich, Lev Glebsky, Rosendo Vazquez. Measures related to metric complexity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1299-1309. doi: 10.3934/dcds.2010.28.1299 |
2018 Impact Factor: 0.295
Tools
Metrics
Other articles
by authors
[Back to Top]