\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups

  • Author Bio: Nikolaos Karaliolios nikolaos.karaliolios@imj-prg.fr
Abstract Full Text(HTML) Related Papers Cited by
  • We study close-to-constants quasiperiodic cocycles in $\mathbb{T} ^{d} \times G$ , where $d \in \mathbb{N} ^{*} $ and $G$ is a compact Lie group, under the assumption that the rotation in the basis satisfies a Diophantine condition. We prove differentiable rigidity for such cocycles: if such a cocycle is measurably conjugate to a constant one satisfying a Diophantine condition with respect to the rotation, then it is $C^{\infty}$ -conjugate to it, and the KAM scheme actually produces a conjugation. We also derive a global differentiable rigidity theorem, assuming the convergence of the renormalization scheme for such dynamical systems.

    Mathematics Subject Classification: Primary: 37C55.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Avila and R. Krikorian, Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math. (2), 164 (2006), 911-940.  doi: 10.4007/annals.2006.164.911.
    [2] A. AvilaB. Fayad and R. Krikorian, A KAM scheme for SL(2.$\mathbb{R} $) cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.  doi: 10.1007/s00039-011-0135-6.
    [3] D. Bump, Lie Groups, Graduate Texts in Mathematics, 225, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-4094-3.
    [4] J. Dieudonné, Eléments d'Analyse, 5, Gauthier-Villars, 1975.
    [5] J. J. Duistermaat and J. A. C. Kolk, Lie Groups, Universitext, Springer-Verlag, Berlin, 2000. doi: 10.1007/978-3-642-56936-4.
    [6] L. H. Eliasson, Ergodic skew-systems on Td × SO(3.R), Ergodic Theory Dynam. Systems, 22 (2002), 1429-1449.  doi: 10.1017/S0143385702000998.
    [7] B. Fayad and R. Krikorian, Rigidity results for quasiperiodic SL(2.$\mathbb{R} $)-cocycles, J. Mod. Dyn., 3 (2009), 497-510.  doi: 10.3934/jmd.2009.3.479.
    [8] H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math., 83 (1961), 573-601.  doi: 10.2307/2372899.
    [9] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
    [10] X. Hou and J. You, Local rigidity of reducibility of analytic quasi-periodic cocycles on U(n), Discrete Contin. Dyn. Syst., 24 (2009), 441-454.  doi: 10.3934/dcds.2009.24.441.
    [11] N. Karaliolios, Invariant distributions for quasiperiodic cocycles in $\mathbb{T}^d $ × SU(2), arXiv: 1407.4763, 2014.
    [12] N. Karaliolios, Continuous spectrum or measurable reducibility for quasiperiodic cocycles in $\mathbb{T}^d $ × SU(2), arXiv: 1512.00057, 2015.
    [13] N. Karaliolios, Global aspects of the reducibility of quasiperiodic cocycles in semisimple compact Lie groups, Mém. Soc. Math. Fr. (N.S.), No. 146 (2016), 4+ⅱ+200 pp.
    [14] A. Kolmogoroff, On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Amer. Math. Soc. Translation, 1949 (1949), 19 pp.. 
    [15] R. Krikorian, Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts, Astérisque, (1999), ⅵ+216 pp.
    [16] R. Krikorian, Global density of reducible quasi-periodic cocycles on T1 × SU(2), Ann. of Math. (2), 154 (2001), 269-326.  doi: 10.2307/3062098.
  • 加载中
SHARE

Article Metrics

HTML views(132) PDF downloads(77) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return