-
Previous Article
On the rate of equidistribution of expanding horospheres in finite-volume quotients of SL(2, ${\mathbb{C}}$)
- JMD Home
- This Volume
-
Next Article
Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups
Approximation of points in the plane by generic lattice orbits
Department of Mathematics, Maloney Hall, Boston College, Chestnut Hill, MA 02467-3806, USA |
We give upper and lower bounds for Diophantine exponents measuring how well a point in the plane can be approximated by points in the orbit of a lattice $\Gamma < {\rm{S}}{{\rm{L}}_2}\left( {\mathbb{R}} \right)$ acting linearly on ${\mathbb{R}^2}$. Our method gives bounds that are uniform for almost all orbits.
References:
[1] |
A. Ghosh, A. Gorodnik and A. Nevo, Best possible rates of distribution of dense lattice orbits in homogeneous spaces, J. Reine Angew. Math., to appear.
doi: 10.1515/crelle-2016-0001. |
[2] |
A. Ghosh, A. Gorodnik and A. Nevo,
Diophantine approximation exponents on homogeneous varieties, in Recent Trends in Ergodic Theory and Dynamical Systems, Contemp. Math., 631, Amer. Math. Soc., Providence, RI, (2015), 181-200.
doi: 10.1090/conm/631/12603. |
[3] |
A. Ghosh and D. Kelmer, Shrinking targets for semisimple groups, arXiv: 1512.05848, 2015. Google Scholar |
[4] |
A. Gorodnik and B. Weiss,
Distribution of lattice orbits on homogeneous varieties, Geom. Funct. Anal., 17 (2007), 58-115.
doi: 10.1007/s00039-006-0583-6. |
[5] |
D. Kelmer, Shrinking targets for discrete time flows on hyperbolic manifolds, preprint. Google Scholar |
[6] |
H. Kim and P. Sarnak,
Refined estimates towards the Ramanujan and Selberg conjectures, J. Amer. Math. Soc., 16 (2003), 139-183.
doi: 10.1090/S0894-0347-02-00410-1. |
[7] |
F. Ledrappier,
Distribution des orbites des réseaux sur le plan réel, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 61-64.
doi: 10.1016/S0764-4442(99)80462-5. |
[8] |
M. Laurent and A. Nogueira,
Approximation to points in the plane by SL(2.Z)-orbits, J. Lond. Math. Soc. (2), 85 (2012), 409-429.
doi: 10.1112/jlms/jdr061. |
[9] |
M. Laurent and A. Nogueira,
Inhomogeneous approximation with coprime integers and lattice orbits, Acta Arith., 154 (2012), 413-427.
doi: 10.4064/aa154-4-5. |
[10] |
F. Maucourant and B. Weiss,
Lattice actions on the plane revisited, Geom. Dedicata, 157 (2012), 1-21.
doi: 10.1007/s10711-011-9596-x. |
[11] |
A. Nogueira,
Orbit distribution on R2 under the natural action of SL(2.Z), Indag. Math. (N.S.), Indag. Math. (N.S.), 13 (2002), 103-124.
doi: 10.1016/S0019-3577(02)90009-1. |
[12] |
M. Pollicott,
Rates of convergence for linear actions of cocompact lattices on the complex plane, Integers, 11B (2011), Paper No. A12, 7pp.
|
[13] |
L. Singhal,
Diophantine exponents for standard linear actions of SL_2 over discrete rings in C, Acta Arith., 177 (2017), 53-73.
doi: 10.4064/aa8370-6-2016. |
[14] |
A. Venkatesh,
Sparse equidistribution problems. period bounds and subconvexity, Ann. of Math. (2), 172 (2010), 989-1094.
doi: 10.4007/annals.2010.172.989. |
show all references
References:
[1] |
A. Ghosh, A. Gorodnik and A. Nevo, Best possible rates of distribution of dense lattice orbits in homogeneous spaces, J. Reine Angew. Math., to appear.
doi: 10.1515/crelle-2016-0001. |
[2] |
A. Ghosh, A. Gorodnik and A. Nevo,
Diophantine approximation exponents on homogeneous varieties, in Recent Trends in Ergodic Theory and Dynamical Systems, Contemp. Math., 631, Amer. Math. Soc., Providence, RI, (2015), 181-200.
doi: 10.1090/conm/631/12603. |
[3] |
A. Ghosh and D. Kelmer, Shrinking targets for semisimple groups, arXiv: 1512.05848, 2015. Google Scholar |
[4] |
A. Gorodnik and B. Weiss,
Distribution of lattice orbits on homogeneous varieties, Geom. Funct. Anal., 17 (2007), 58-115.
doi: 10.1007/s00039-006-0583-6. |
[5] |
D. Kelmer, Shrinking targets for discrete time flows on hyperbolic manifolds, preprint. Google Scholar |
[6] |
H. Kim and P. Sarnak,
Refined estimates towards the Ramanujan and Selberg conjectures, J. Amer. Math. Soc., 16 (2003), 139-183.
doi: 10.1090/S0894-0347-02-00410-1. |
[7] |
F. Ledrappier,
Distribution des orbites des réseaux sur le plan réel, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 61-64.
doi: 10.1016/S0764-4442(99)80462-5. |
[8] |
M. Laurent and A. Nogueira,
Approximation to points in the plane by SL(2.Z)-orbits, J. Lond. Math. Soc. (2), 85 (2012), 409-429.
doi: 10.1112/jlms/jdr061. |
[9] |
M. Laurent and A. Nogueira,
Inhomogeneous approximation with coprime integers and lattice orbits, Acta Arith., 154 (2012), 413-427.
doi: 10.4064/aa154-4-5. |
[10] |
F. Maucourant and B. Weiss,
Lattice actions on the plane revisited, Geom. Dedicata, 157 (2012), 1-21.
doi: 10.1007/s10711-011-9596-x. |
[11] |
A. Nogueira,
Orbit distribution on R2 under the natural action of SL(2.Z), Indag. Math. (N.S.), Indag. Math. (N.S.), 13 (2002), 103-124.
doi: 10.1016/S0019-3577(02)90009-1. |
[12] |
M. Pollicott,
Rates of convergence for linear actions of cocompact lattices on the complex plane, Integers, 11B (2011), Paper No. A12, 7pp.
|
[13] |
L. Singhal,
Diophantine exponents for standard linear actions of SL_2 over discrete rings in C, Acta Arith., 177 (2017), 53-73.
doi: 10.4064/aa8370-6-2016. |
[14] |
A. Venkatesh,
Sparse equidistribution problems. period bounds and subconvexity, Ann. of Math. (2), 172 (2010), 989-1094.
doi: 10.4007/annals.2010.172.989. |
[1] |
Dmitry Kleinbock, Xi Zhao. An application of lattice points counting to shrinking target problems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 155-168. doi: 10.3934/dcds.2018007 |
[2] |
Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129 |
[3] |
Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43 |
[4] |
Chao Ma, Baowei Wang, Jun Wu. Diophantine approximation of the orbits in topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2455-2471. doi: 10.3934/dcds.2019104 |
[5] |
Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008 |
[6] |
Jörg Schmeling. A notion of independence via moving targets. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 269-280. doi: 10.3934/dcds.2006.15.269 |
[7] |
Jimmy Tseng. On circle rotations and the shrinking target properties. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1111-1122. doi: 10.3934/dcds.2008.20.1111 |
[8] |
Brandon Seward. Every action of a nonamenable group is the factor of a small action. Journal of Modern Dynamics, 2014, 8 (2) : 251-270. doi: 10.3934/jmd.2014.8.251 |
[9] |
Sara D. Cardell, Amparo Fúster-Sabater. Modelling the shrinking generator in terms of linear CA. Advances in Mathematics of Communications, 2016, 10 (4) : 797-809. doi: 10.3934/amc.2016041 |
[10] |
Jon Chaika, David Constantine. A quantitative shrinking target result on Sturmian sequences for rotations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5189-5204. doi: 10.3934/dcds.2018229 |
[11] |
Michael Hutchings. Mean action and the Calabi invariant. Journal of Modern Dynamics, 2016, 10: 511-539. doi: 10.3934/jmd.2016.10.511 |
[12] |
David DeLatte. Diophantine conditions for the linearization of commuting holomorphic functions. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 317-332. doi: 10.3934/dcds.1997.3.317 |
[13] |
Hans Koch, João Lopes Dias. Renormalization of diophantine skew flows, with applications to the reducibility problem. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 477-500. doi: 10.3934/dcds.2008.21.477 |
[14] |
E. Muñoz Garcia, R. Pérez-Marco. Diophantine conditions in small divisors and transcendental number theory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1401-1409. doi: 10.3934/dcds.2003.9.1401 |
[15] |
Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems & Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465 |
[16] |
Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems & Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231 |
[17] |
Rong Liu, Saini Jonathan Tishari. Automatic tracking and positioning algorithm for moving targets in complex environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1251-1264. doi: 10.3934/dcdss.2019086 |
[18] |
Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492 |
[19] |
S. A. Krat. On pairs of metrics invariant under a cocompact action of a group. Electronic Research Announcements, 2001, 7: 79-86. |
[20] |
Alexandre Rocha, Mário Jorge Dias Carneiro. A dynamical condition for differentiability of Mather's average action. Journal of Geometric Mechanics, 2014, 6 (4) : 549-566. doi: 10.3934/jgm.2014.6.549 |
2018 Impact Factor: 0.295
Tools
Metrics
Other articles
by authors
[Back to Top]