2017, 11: 189-217. doi: 10.3934/jmd.2017009

Effective equidistribution of circles in the limit sets of Kleinian groups

Mathematics Department, Yale University, New Haven, CT 06520, USA

Received  November 25, 2015 Revised  October 22, 2016 Published  February 2017

Consider a general circle packing $\mathscr{P}$ in the complex plane $\mathbb{C}$ invariant under a Kleinian group $\Gamma$. When $\Gamma$ is convex cocompact or its critical exponent is greater than 1, we obtain an effective equidistribution for small circles in $\mathscr{P}$ intersecting any bounded connected regular set in $\mathbb{C}$; this provides an effective version of an earlier work of Oh-Shah [12]. In view of the recent result of McMullen-Mohammadi-Oh [6], our effective circle counting theorem applies to the circles contained in the limit set of a convex cocompact but non-cocompact Kleinian group whose limit set contains at least one circle. Moreover, consider the circle packing $\mathscr{P}(\mathscr{T})$ of the ideal triangle attained by filling in largest inner circles. We give an effective estimate to the number of disks whose hyperbolic areas are greater than $t$, as $t\to0$, effectivizing the work of Oh [10].

Citation: Wenyu Pan. Effective equidistribution of circles in the limit sets of Kleinian groups. Journal of Modern Dynamics, 2017, 11: 189-217. doi: 10.3934/jmd.2017009
References:
[1]

C. J. Bishop and P. W. Jones, Hausdorff dimension and Kleinian groups, Acta Math., 179 (1997), 1-39.  doi: 10.1007/BF02392718.

[2]

R. D. Canary and E. Taylor, Kleinian groups with small limit sets, Duke Math J., 73 (1994), 371-381.  doi: 10.1215/S0012-7094-94-07316-X.

[3]

A. Kontorovich and H. Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds. With an appendix by Oh and Nimish Shah, J. Amer. Math. Soc., 24 (2011), 603-648.  doi: 10.1090/S0894-0347-2011-00691-7.

[4]

M. Lee and H. Oh, Effective count for Apollonian circle packings and closed horospheres, Geom. Funct. Anal., 23 (2013), 580-621.  doi: 10.1007/s00039-013-0217-8.

[5]

C. McMullen, Hausdorff dimension and conformal dynamics. Ⅲ. Computation of dimension, Amer. J. Math., 120 (1998), 691-721.  doi: 10.1353/ajm.1998.0031.

[6]

C. McMullen, A. Mohammadi and H. Oh, Geodesic planes in hyperbolic 3-manifolds, H. Invent. Math. , (2016). Available from: http://gauss.math.yale.edu/~ho2/. doi: 10.1007/s00222-016-0711-3.

[7]

A. Mohammadi and H. Oh, Matrix coefficients, counting and primes for orbits of geometrically finite groups, J. Eur. Math. Soc.(JEMS), 17 (2015), 837-897.  doi: 10.4171/JEMS/520.

[8]

A. Mohammadi and H. Oh, Ergodicity of unipotent flows and Kleinian groups, J. Amer. Math. Soc., 28 (2015), 531-577.  doi: 10.1090/S0894-0347-2014-00811-0.

[9] D. MumfordC. Series and D. Wright, Indra's Pearls. The Vision of Felix Klein, Cambridge University Press, New York, 2002.  doi: 10.1017/CBO9781107050051.024.
[10]

H. Oh, Harmonic analysis, ergodic theory and counting for thin groups, in Thin Groups and Superstrong Approximation (eds. E. Breulliard and H. Oh), Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press., Cambridge, 2014.

[11]

H. Oh and N. Shah, Equidistribution and counting for orbits of geometrically finite hyper bolic groups, J. Amer. Math. Soc., 26 (2013), 511-562.  doi: 10.1090/S0894-0347-2012-00749-8.

[12]

H. Oh and N. Shah, The asymptotic distribution of circles in the orbits of Kleinian groups, Invent. Math., 187 (2012), 1-35.  doi: 10.1007/s00222-011-0326-7.

[13]

J. Parkkonen and F. Paulin, Counting common perpendicular arcs in negative curvature, To appear in Ergodic Theory and Dynamical Systems, arXiv: 1305.1332. doi: 10.1017/etds.2015.77.

[14]

P. Vesselin and L. Stoyanov, Distribution of periods of closed trajectories in exponentially shrinking intervals, Comm. Math. Phys., 310 (2012), 675-704.  doi: 10.1007/s00220-012-1419-x.

[15]

B. Stratmann and M. Urbański, Diophantine extremality of the Patterson measure, Math. Proc. Cambridge Philos. Soc., 140 (2006), 297-304.  doi: 10.1017/S0305004105009114.

[16]

B. Stratmann and S. L. Velani, The Patterson measure for geometrically finite groups with parabolic elements. new and old, Proc. London Math. Soc. (3), 71 (1995), 197-220.  doi: 10.1112/plms/s3-71.1.197.

[17]

D. Sullivan, Entropy, Hausdorff measures old and new. and limit sets of geometrically finite Kleinian groups, Acta Math., 153 (1984), 259-277.  doi: 10.1007/BF02392379.

[18]

L. Stoyanov, Spectra of Ruelle transfer operators for axiom A flows, Nonlinearity, 24 (2011), 1089-1120.  doi: 10.1088/0951-7715/24/4/005.

[19]

I. Vinogradov, Effective bisector estimate with applications to Apollonian circle packings, Int. Math. Res. Not. IMRN 2014,3217–3262.

show all references

References:
[1]

C. J. Bishop and P. W. Jones, Hausdorff dimension and Kleinian groups, Acta Math., 179 (1997), 1-39.  doi: 10.1007/BF02392718.

[2]

R. D. Canary and E. Taylor, Kleinian groups with small limit sets, Duke Math J., 73 (1994), 371-381.  doi: 10.1215/S0012-7094-94-07316-X.

[3]

A. Kontorovich and H. Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds. With an appendix by Oh and Nimish Shah, J. Amer. Math. Soc., 24 (2011), 603-648.  doi: 10.1090/S0894-0347-2011-00691-7.

[4]

M. Lee and H. Oh, Effective count for Apollonian circle packings and closed horospheres, Geom. Funct. Anal., 23 (2013), 580-621.  doi: 10.1007/s00039-013-0217-8.

[5]

C. McMullen, Hausdorff dimension and conformal dynamics. Ⅲ. Computation of dimension, Amer. J. Math., 120 (1998), 691-721.  doi: 10.1353/ajm.1998.0031.

[6]

C. McMullen, A. Mohammadi and H. Oh, Geodesic planes in hyperbolic 3-manifolds, H. Invent. Math. , (2016). Available from: http://gauss.math.yale.edu/~ho2/. doi: 10.1007/s00222-016-0711-3.

[7]

A. Mohammadi and H. Oh, Matrix coefficients, counting and primes for orbits of geometrically finite groups, J. Eur. Math. Soc.(JEMS), 17 (2015), 837-897.  doi: 10.4171/JEMS/520.

[8]

A. Mohammadi and H. Oh, Ergodicity of unipotent flows and Kleinian groups, J. Amer. Math. Soc., 28 (2015), 531-577.  doi: 10.1090/S0894-0347-2014-00811-0.

[9] D. MumfordC. Series and D. Wright, Indra's Pearls. The Vision of Felix Klein, Cambridge University Press, New York, 2002.  doi: 10.1017/CBO9781107050051.024.
[10]

H. Oh, Harmonic analysis, ergodic theory and counting for thin groups, in Thin Groups and Superstrong Approximation (eds. E. Breulliard and H. Oh), Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press., Cambridge, 2014.

[11]

H. Oh and N. Shah, Equidistribution and counting for orbits of geometrically finite hyper bolic groups, J. Amer. Math. Soc., 26 (2013), 511-562.  doi: 10.1090/S0894-0347-2012-00749-8.

[12]

H. Oh and N. Shah, The asymptotic distribution of circles in the orbits of Kleinian groups, Invent. Math., 187 (2012), 1-35.  doi: 10.1007/s00222-011-0326-7.

[13]

J. Parkkonen and F. Paulin, Counting common perpendicular arcs in negative curvature, To appear in Ergodic Theory and Dynamical Systems, arXiv: 1305.1332. doi: 10.1017/etds.2015.77.

[14]

P. Vesselin and L. Stoyanov, Distribution of periods of closed trajectories in exponentially shrinking intervals, Comm. Math. Phys., 310 (2012), 675-704.  doi: 10.1007/s00220-012-1419-x.

[15]

B. Stratmann and M. Urbański, Diophantine extremality of the Patterson measure, Math. Proc. Cambridge Philos. Soc., 140 (2006), 297-304.  doi: 10.1017/S0305004105009114.

[16]

B. Stratmann and S. L. Velani, The Patterson measure for geometrically finite groups with parabolic elements. new and old, Proc. London Math. Soc. (3), 71 (1995), 197-220.  doi: 10.1112/plms/s3-71.1.197.

[17]

D. Sullivan, Entropy, Hausdorff measures old and new. and limit sets of geometrically finite Kleinian groups, Acta Math., 153 (1984), 259-277.  doi: 10.1007/BF02392379.

[18]

L. Stoyanov, Spectra of Ruelle transfer operators for axiom A flows, Nonlinearity, 24 (2011), 1089-1120.  doi: 10.1088/0951-7715/24/4/005.

[19]

I. Vinogradov, Effective bisector estimate with applications to Apollonian circle packings, Int. Math. Res. Not. IMRN 2014,3217–3262.

Figure 1.  Circle packing intersecting bounded region (background pictures are reproduced from Indra's Pearls: The Vision of Felix Klein, by D. Mumford, C. Series and D. Wright, copyright Cambridge University Press 2002)
Figure 2.  Circle packing in ideal hyperbolic triangle
Figure 3.  Apollonian circle packing $\mathscr{P}$ and generators of $\mathcal{A}$
[1]

Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335

[2]

Yury Neretin. The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions. Journal of Geometric Mechanics, 2017, 9 (2) : 207-225. doi: 10.3934/jgm.2017009

[3]

Or Landesberg. Horospherically invariant measures and finitely generated Kleinian groups. Journal of Modern Dynamics, 2021, 17: 337-352. doi: 10.3934/jmd.2021012

[4]

A. A. Pinto, D. Sullivan. The circle and the solenoid. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 463-504. doi: 10.3934/dcds.2006.16.463

[5]

Ankhbayar Chuluunbaatar, Burmaa Galaa, Enkhbat Rentsen. Application of sphere packing theory in financial management. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022092

[6]

S. R. Bullett and W. J. Harvey. Mating quadratic maps with Kleinian groups via quasiconformal surgery. Electronic Research Announcements, 2000, 6: 21-30.

[7]

Chuanxin Zhao, Lin Jiang, Kok Lay Teo. A hybrid chaos firefly algorithm for three-dimensional irregular packing problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 409-429. doi: 10.3934/jimo.2018160

[8]

Wenxun Xing, Feng Chen. A-shaped bin packing: Worst case analysis via simulation. Journal of Industrial and Management Optimization, 2005, 1 (3) : 323-335. doi: 10.3934/jimo.2005.1.323

[9]

Shinji Imahori, Yoshiyuki Karuno, Kenju Tateishi. Pseudo-polynomial time algorithms for combinatorial food mixture packing problems. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1057-1073. doi: 10.3934/jimo.2016.12.1057

[10]

Jimmy Tseng. On circle rotations and the shrinking target properties. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1111-1122. doi: 10.3934/dcds.2008.20.1111

[11]

Hicham Zmarrou, Ale Jan Homburg. Dynamics and bifurcations of random circle diffeomorphism. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 719-731. doi: 10.3934/dcdsb.2008.10.719

[12]

Heather Hannah, A. Alexandrou Himonas, Gerson Petronilho. Anisotropic Gevrey regularity for mKdV on the circle. Conference Publications, 2011, 2011 (Special) : 634-642. doi: 10.3934/proc.2011.2011.634

[13]

Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251

[14]

Mao Chen, Xiangyang Tang, Zhizhong Zeng, Sanya Liu. An efficient heuristic algorithm for two-dimensional rectangular packing problem with central rectangle. Journal of Industrial and Management Optimization, 2020, 16 (1) : 495-510. doi: 10.3934/jimo.2018164

[15]

Salma Mezghani, Boukthir Haddar, Habib Chabchoub. The evolution of rectangular bin packing problem — A review of research topics, applications, and cited papers. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022088

[16]

Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597

[17]

Alena Erchenko. Flexibility of Lyapunov exponents for expanding circle maps. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2325-2342. doi: 10.3934/dcds.2019098

[18]

Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099

[19]

Abdumajid Begmatov, Akhtam Dzhalilov, Dieter Mayer. Renormalizations of circle hoemomorphisms with a single break point. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4487-4513. doi: 10.3934/dcds.2014.34.4487

[20]

Saša Kocić, João Lopes Dias. Reducibility of quasi-periodically forced circle flows. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5325-5345. doi: 10.3934/dcds.2020229

2021 Impact Factor: 0.641

Metrics

  • PDF downloads (91)
  • HTML views (123)
  • Cited by (2)

Other articles
by authors

[Back to Top]