2017, 11: 341-368. doi: 10.3934/jmd.2017014

Normal forms for non-uniform contractions

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

Received  May 12, 2016 Revised  March 03, 2017 Published  April 2017

Fund Project: BK: Supported in part by Simons Foundation grant 426243.
VS: Supported in part by NSF grant DMS-1301693.

Let $f$ be a measure-preserving transformation of a Lebesgue space $(X,\mu)$ and let ${\mathscr{F}}$ be its extension to a bundle $\mathscr{E} = X \times {\mathbb{R}}^m$ by smooth fiber maps ${\mathscr{F}}_x : {\mathscr{E}}_x \to {\mathscr{E}}_{fx}$ so that the derivative of ${\mathscr{F}}$ at the zero section has negative Lyapunov exponents. We construct a measurable system of smooth coordinate changes ${\mathscr{H}}_x$ on ${\mathscr{E}}_x$ for $\mu$-a.e. $x$ so that the maps ${\mathscr{P}}_x ={\mathscr{H}}_{fx} \circ {\mathscr{F}}_x \circ {\mathscr{H}}_x^{-1}$ are sub-resonance polynomials in a finite dimensional Lie group. Our construction shows that such ${\mathscr{H}}_x$ and ${\mathscr{P}}_x$ are unique up to a sub-resonance polynomial. As a consequence, we obtain the centralizer theorem that the coordinate change $\mathscr{H}$ also conjugates any commuting extension to a polynomial extension of the same type. We apply our results to a measure-preserving diffeomorphism $f$ with a non-uniformly contracting invariant foliation $W$. We construct a measurable system of smooth coordinate changes ${\mathscr{H}}_x: W_x \to T_xW$ such that the maps ${\mathscr{H}}_{fx} \circ f \circ {\mathscr{H}}_x^{-1}$ are polynomials of sub-resonance type. Moreover, we show that for almost every leaf the coordinate changes exist at each point on the leaf and give a coherent atlas with transition maps in a finite dimensional Lie group.

Citation: Boris Kalinin, Victoria Sadovskaya. Normal forms for non-uniform contractions. Journal of Modern Dynamics, 2017, 11: 341-368. doi: 10.3934/jmd.2017014
References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, SpringerVerlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

L. Arnold and X. Kedai, Normal forms for random diffeomorphisms, J. of Dynamics and Differential Equations, 4 (1992), 445-483.  doi: 10.1007/BF01053806.  Google Scholar

[3]

L. Barreira and Ya. Pesin, Nonuniformly Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and Its Applications, 115, Cambridge Univ. Press, Cambridge, 2007. doi: 10.1017/CBO9781107326026.  Google Scholar

[4] I. U. Bronstein and A. Ya. Kopanskii, Smooth Invariant Manifolds and Normal Forms, World Scientific, 1994.  doi: 10.1142/9789812798749.  Google Scholar
[5]

Y. Fang, On the rigidity of quasiconformal Anosov flows, Ergodic Theory Dynam. Systems, 27 (2007), 1773-1802.  doi: 10.1017/S0143385707000326.  Google Scholar

[6]

Y. FangP. Foulon and B. Hasselblatt, Zygmund strong foliations in higher dimension, J. of Modern Dynamics, 4 (2010), 549-569.  doi: 10.3934/jmd.2010.4.549.  Google Scholar

[7]

R. Feres, A differential-geometric view of normal forms of contractions, in Modern Dynamical Systems and Applications, Cambridge University Press, 2004,103-121.  Google Scholar

[8]

D. FisherB. Kalinin and R. Spatzier, Totally nonsymplectic Anosov actions on tori and nilmanifolds, Geometry and Topology, 15 (2011), 191-216.  doi: 10.2140/gt.2011.15.191.  Google Scholar

[9]

A. GogolevB. Kalinin and V. Sadovskaya, Local rigidity for Anosov automorphisms(With appendix by R. de la Llave), Math. Research Letters, 18 (2011), 843-858.  doi: 10.4310/MRL.2011.v18.n5.a4.  Google Scholar

[10]

M. Guysinsky, The theory of non-stationary normal forms, Ergodic Theory Dynam. Systems, 22 (2002), 845-862.  doi: 10.1017/S0143385702000421.  Google Scholar

[11]

M. Guysinsky and A. Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Research Letters, 5 (1998), 149-163.  doi: 10.4310/MRL.1998.v5.n2.a2.  Google Scholar

[12]

B. Kalinin and A. Katok, Invariant measures for actions of higher rank abelian groups, Proceedings of Symposia in Pure Mathematics, 69 (2001), 593-637.  doi: 10.1090/pspum/069/1858547.  Google Scholar

[13]

B. Kalinin and A. Katok, Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori, J. of Modern Dynamics, 1 (2007), 123-146.   Google Scholar

[14]

B. KalininA. Katok and F. Rodriguez-Hertz, Nonuniform measure rigidity, Annals of Math., 174 (2011), 361-400.  doi: 10.4007/annals.2011.174.1.10.  Google Scholar

[15]

A. Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math., 75 (1991), 203-241.  doi: 10.1007/BF02776025.  Google Scholar

[16]

A. Katok and F. Rodriguez-Hertz, Arithmeticity and topology of higher rank actions of Abelian groups, J. of Modern Dynamics, 10 (2016), 135-172.  doi: 10.3934/jmd.2016.10.135.  Google Scholar

[17]

A. Katok and R. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst. Steklova, 216 (1997), Din. Sist. i Smezhnye Vopr., 292–319; translation in Proc. Steklov Inst. Math., 216 (1997), 287–314.  Google Scholar

[18]

B. Kalinin and V. Sadovskaya, On local and global rigidity of quasiconformal Anosov diffeomorphisms, J. Inst. Math. Jussieu, 2 (2003), 567-582.  doi: 10.1017/S1474748003000161.  Google Scholar

[19]

B. Kalinin and V. Sadovskaya, Global rigidity for totally nonsymplectic Anosov Zk actions, Geometry and Topology, 10 (2006), 929-954.  doi: 10.2140/gt.2006.10.929.  Google Scholar

[20]

B. Kalinin and V. Sadovskaya, Normal forms on contracting foliations: Smoothness and homogeneous structure, Geometriae Dedicata, 183 (2016), 181-194.  doi: 10.1007/s10711-016-0153-5.  Google Scholar

[21]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. Ⅰ. Characterization of measures satisfying Pesin's entropy formula, Annals of Math., 122 (1985), 509-539.  doi: 10.2307/1971328.  Google Scholar

[22]

W. Li and K. Lu, Sternberg theorems for random dynamical systems, Communications on Pure and Applied Mathematics, 58 (2005), 941-988.  doi: 10.1002/cpa.20083.  Google Scholar

[23]

K. Melnick, Nonstationary smooth geometric structures for contracting measurable cocycles, http://www.math.umd.edu/~kmelnick/. Google Scholar

[24]

D. Ruelle, Ergodic theory of differentiable dynamical systems, Publications Mathématiques de l'I.H.É.S., 50 (1979), 27-58.   Google Scholar

[25]

V. Sadovskaya, On uniformly quasiconformal Anosov systems, Math. Research Letters, 12 (2005), 425-441.  doi: 10.4310/MRL.2005.v12.n3.a12.  Google Scholar

[26]

S. Sternberg, Local contractions and a theorem of Poincaré, Amer. J. of Math., 79 (1957), 809-824.  doi: 10.2307/2372437.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, SpringerVerlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

L. Arnold and X. Kedai, Normal forms for random diffeomorphisms, J. of Dynamics and Differential Equations, 4 (1992), 445-483.  doi: 10.1007/BF01053806.  Google Scholar

[3]

L. Barreira and Ya. Pesin, Nonuniformly Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and Its Applications, 115, Cambridge Univ. Press, Cambridge, 2007. doi: 10.1017/CBO9781107326026.  Google Scholar

[4] I. U. Bronstein and A. Ya. Kopanskii, Smooth Invariant Manifolds and Normal Forms, World Scientific, 1994.  doi: 10.1142/9789812798749.  Google Scholar
[5]

Y. Fang, On the rigidity of quasiconformal Anosov flows, Ergodic Theory Dynam. Systems, 27 (2007), 1773-1802.  doi: 10.1017/S0143385707000326.  Google Scholar

[6]

Y. FangP. Foulon and B. Hasselblatt, Zygmund strong foliations in higher dimension, J. of Modern Dynamics, 4 (2010), 549-569.  doi: 10.3934/jmd.2010.4.549.  Google Scholar

[7]

R. Feres, A differential-geometric view of normal forms of contractions, in Modern Dynamical Systems and Applications, Cambridge University Press, 2004,103-121.  Google Scholar

[8]

D. FisherB. Kalinin and R. Spatzier, Totally nonsymplectic Anosov actions on tori and nilmanifolds, Geometry and Topology, 15 (2011), 191-216.  doi: 10.2140/gt.2011.15.191.  Google Scholar

[9]

A. GogolevB. Kalinin and V. Sadovskaya, Local rigidity for Anosov automorphisms(With appendix by R. de la Llave), Math. Research Letters, 18 (2011), 843-858.  doi: 10.4310/MRL.2011.v18.n5.a4.  Google Scholar

[10]

M. Guysinsky, The theory of non-stationary normal forms, Ergodic Theory Dynam. Systems, 22 (2002), 845-862.  doi: 10.1017/S0143385702000421.  Google Scholar

[11]

M. Guysinsky and A. Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Research Letters, 5 (1998), 149-163.  doi: 10.4310/MRL.1998.v5.n2.a2.  Google Scholar

[12]

B. Kalinin and A. Katok, Invariant measures for actions of higher rank abelian groups, Proceedings of Symposia in Pure Mathematics, 69 (2001), 593-637.  doi: 10.1090/pspum/069/1858547.  Google Scholar

[13]

B. Kalinin and A. Katok, Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori, J. of Modern Dynamics, 1 (2007), 123-146.   Google Scholar

[14]

B. KalininA. Katok and F. Rodriguez-Hertz, Nonuniform measure rigidity, Annals of Math., 174 (2011), 361-400.  doi: 10.4007/annals.2011.174.1.10.  Google Scholar

[15]

A. Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math., 75 (1991), 203-241.  doi: 10.1007/BF02776025.  Google Scholar

[16]

A. Katok and F. Rodriguez-Hertz, Arithmeticity and topology of higher rank actions of Abelian groups, J. of Modern Dynamics, 10 (2016), 135-172.  doi: 10.3934/jmd.2016.10.135.  Google Scholar

[17]

A. Katok and R. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst. Steklova, 216 (1997), Din. Sist. i Smezhnye Vopr., 292–319; translation in Proc. Steklov Inst. Math., 216 (1997), 287–314.  Google Scholar

[18]

B. Kalinin and V. Sadovskaya, On local and global rigidity of quasiconformal Anosov diffeomorphisms, J. Inst. Math. Jussieu, 2 (2003), 567-582.  doi: 10.1017/S1474748003000161.  Google Scholar

[19]

B. Kalinin and V. Sadovskaya, Global rigidity for totally nonsymplectic Anosov Zk actions, Geometry and Topology, 10 (2006), 929-954.  doi: 10.2140/gt.2006.10.929.  Google Scholar

[20]

B. Kalinin and V. Sadovskaya, Normal forms on contracting foliations: Smoothness and homogeneous structure, Geometriae Dedicata, 183 (2016), 181-194.  doi: 10.1007/s10711-016-0153-5.  Google Scholar

[21]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. Ⅰ. Characterization of measures satisfying Pesin's entropy formula, Annals of Math., 122 (1985), 509-539.  doi: 10.2307/1971328.  Google Scholar

[22]

W. Li and K. Lu, Sternberg theorems for random dynamical systems, Communications on Pure and Applied Mathematics, 58 (2005), 941-988.  doi: 10.1002/cpa.20083.  Google Scholar

[23]

K. Melnick, Nonstationary smooth geometric structures for contracting measurable cocycles, http://www.math.umd.edu/~kmelnick/. Google Scholar

[24]

D. Ruelle, Ergodic theory of differentiable dynamical systems, Publications Mathématiques de l'I.H.É.S., 50 (1979), 27-58.   Google Scholar

[25]

V. Sadovskaya, On uniformly quasiconformal Anosov systems, Math. Research Letters, 12 (2005), 425-441.  doi: 10.4310/MRL.2005.v12.n3.a12.  Google Scholar

[26]

S. Sternberg, Local contractions and a theorem of Poincaré, Amer. J. of Math., 79 (1957), 809-824.  doi: 10.2307/2372437.  Google Scholar

[1]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[2]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[3]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[4]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[5]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[6]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[7]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[8]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[9]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[10]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[11]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[12]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[13]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[14]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[15]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[16]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[17]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[18]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[19]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[20]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (56)
  • HTML views (75)
  • Cited by (3)

Other articles
by authors

[Back to Top]