-
Previous Article
Values of random polynomials at integer points
- JMD Home
- This Volume
- Next Article
A quantitative Oppenheim theorem for generic ternary quadratic forms
1. | School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India |
2. | Department of Mathematics, Boston College, Chestnut Hill, MA 02467-3806, USA |
We prove a quantitative version of Oppenheim's conjecture for generic ternary indefinite quadratic forms. Our results are inspired by and analogous to recent results for diagonal quadratic forms due to Bourgain [
References:
[1] |
J. S. Athreya and G. A. Margulis,
Logarithm laws for unipotent flows. I, J. Mod. Dyn., 3 (2009), 359-378.
doi: 10.3934/jmd.2009.3.359. |
[2] |
J. S. Athreya and G. A. Margulis,
Values of random polynomials at integer points,
J. Mod. Dyn. , to appear. |
[3] |
J. Bourgain,
A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512.
doi: 10.1007/s11856-016-1385-7. |
[4] |
S. G. Dani and G. A. Margulis,
Limit distributions of orbits of unipotent flows and values of quadratic forms, Adv. in Soviet Math., 16 (1993), 91-137.
|
[5] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.
doi: 10.2307/120984. |
[6] |
A. Ghosh, A. Gorodnik and A. Nevo,
Best possible rates of distribution of dense lattice orbits in homogeneous spaces,
J. Reine Angew. Math. , to appear. |
[7] |
A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, arXiv:1801.01027, 2018. |
[8] |
A. Ghosh and D. Kelmer,
Shrinking targets for semisimple groups, Bull. Lond. Math. Soc., 49 (2017), 235-245.
doi: 10.1112/blms.12023. |
[9] |
A. Gorodnik and A. Nevo,
The Ergodic Theory of Lattice Subgroups,
Annals of Mathematics Studies, 172, Princeton University Press, Princeton, NJ, 2010. |
[10] |
E. Lindenstrauss and G. Margulis,
Effective estimates on indefinite ternary forms, Israel J. Math., 203 (2014), 445-499.
doi: 10.1007/s11856-014-1110-3. |
[11] |
G. A. Margulis,
Discrete subgroups and ergodic theory,
in Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, MA, 1989,377-398. |
[12] |
H. Oh,
Tempered subgroups and representations with minimal decay of matrix coefficients, Bull. Soc. Math. France, 126 (1998), 355-380.
doi: 10.24033/bsmf.2329. |
[13] |
C. A. Rogers,
Mean values over the space of lattices, Acta Math., 94 (1955), 249-287.
doi: 10.1007/BF02392493. |
[14] |
P. Sarnak,
Values at integers of binary quadratic forms,
in Harmonic Analysis and Number Theory (Montreal, PQ, 1996), CMS Conf. Proc., 21, AMS, Providence, RI, (1997), 181-203. |
show all references
References:
[1] |
J. S. Athreya and G. A. Margulis,
Logarithm laws for unipotent flows. I, J. Mod. Dyn., 3 (2009), 359-378.
doi: 10.3934/jmd.2009.3.359. |
[2] |
J. S. Athreya and G. A. Margulis,
Values of random polynomials at integer points,
J. Mod. Dyn. , to appear. |
[3] |
J. Bourgain,
A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512.
doi: 10.1007/s11856-016-1385-7. |
[4] |
S. G. Dani and G. A. Margulis,
Limit distributions of orbits of unipotent flows and values of quadratic forms, Adv. in Soviet Math., 16 (1993), 91-137.
|
[5] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.
doi: 10.2307/120984. |
[6] |
A. Ghosh, A. Gorodnik and A. Nevo,
Best possible rates of distribution of dense lattice orbits in homogeneous spaces,
J. Reine Angew. Math. , to appear. |
[7] |
A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, arXiv:1801.01027, 2018. |
[8] |
A. Ghosh and D. Kelmer,
Shrinking targets for semisimple groups, Bull. Lond. Math. Soc., 49 (2017), 235-245.
doi: 10.1112/blms.12023. |
[9] |
A. Gorodnik and A. Nevo,
The Ergodic Theory of Lattice Subgroups,
Annals of Mathematics Studies, 172, Princeton University Press, Princeton, NJ, 2010. |
[10] |
E. Lindenstrauss and G. Margulis,
Effective estimates on indefinite ternary forms, Israel J. Math., 203 (2014), 445-499.
doi: 10.1007/s11856-014-1110-3. |
[11] |
G. A. Margulis,
Discrete subgroups and ergodic theory,
in Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, MA, 1989,377-398. |
[12] |
H. Oh,
Tempered subgroups and representations with minimal decay of matrix coefficients, Bull. Soc. Math. France, 126 (1998), 355-380.
doi: 10.24033/bsmf.2329. |
[13] |
C. A. Rogers,
Mean values over the space of lattices, Acta Math., 94 (1955), 249-287.
doi: 10.1007/BF02392493. |
[14] |
P. Sarnak,
Values at integers of binary quadratic forms,
in Harmonic Analysis and Number Theory (Montreal, PQ, 1996), CMS Conf. Proc., 21, AMS, Providence, RI, (1997), 181-203. |
[1] |
Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129 |
[2] |
Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43 |
[3] |
Jiyoung Han, Seonhee Lim, Keivan Mallahi-Karai. Asymptotic distribution of values of isotropic here quadratic forms at S-integral points. Journal of Modern Dynamics, 2017, 11: 501-550. doi: 10.3934/jmd.2017020 |
[4] |
Nimish Shah, Lei Yang. Equidistribution of curves in homogeneous spaces and Dirichlet's approximation theorem for matrices. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5247-5287. doi: 10.3934/dcds.2020227 |
[5] |
Chao Ma, Baowei Wang, Jun Wu. Diophantine approximation of the orbits in topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2455-2471. doi: 10.3934/dcds.2019104 |
[6] |
Hans Koch, João Lopes Dias. Renormalization of diophantine skew flows, with applications to the reducibility problem. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 477-500. doi: 10.3934/dcds.2008.21.477 |
[7] |
Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008 |
[8] |
Arturo Echeverría-Enríquez, Alberto Ibort, Miguel C. Muñoz-Lecanda, Narciso Román-Roy. Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (4) : 397-419. doi: 10.3934/jgm.2012.4.397 |
[9] |
X. X. Huang, D. Li, Xiaoqi Yang. Convergence of optimal values of quadratic penalty problems for mathematical programs with complementarity constraints. Journal of Industrial and Management Optimization, 2006, 2 (3) : 287-296. doi: 10.3934/jimo.2006.2.287 |
[10] |
Se-Hyun Ku. Expansive flows on uniform spaces. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1585-1598. doi: 10.3934/dcds.2021165 |
[11] |
Livio Flaminio, Giovanni Forni, Federico Rodriguez Hertz. Invariant distributions for homogeneous flows and affine transformations. Journal of Modern Dynamics, 2016, 10: 33-79. doi: 10.3934/jmd.2016.10.33 |
[12] |
Constantin N. Beli. Representations of integral quadratic forms over dyadic local fields. Electronic Research Announcements, 2006, 12: 100-112. |
[13] |
Jyrki Lahtonen, Gary McGuire, Harold N. Ward. Gold and Kasami-Welch functions, quadratic forms, and bent functions. Advances in Mathematics of Communications, 2007, 1 (2) : 243-250. doi: 10.3934/amc.2007.1.243 |
[14] |
Jiyoung Han. Quantitative oppenheim conjecture for $ S $-arithmetic quadratic forms of rank $ 3 $ and $ 4 $. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2205-2225. doi: 10.3934/dcds.2020359 |
[15] |
Daniel Guan. Classification of compact complex homogeneous spaces with invariant volumes. Electronic Research Announcements, 1997, 3: 90-92. |
[16] |
Danijela Damjanovic, James Tanis, Zhenqi Jenny Wang. On globally hypoelliptic abelian actions and their existence on homogeneous spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6747-6766. doi: 10.3934/dcds.2020164 |
[17] |
Daniel Guan. Classification of compact homogeneous spaces with invariant symplectic structures. Electronic Research Announcements, 1997, 3: 52-54. |
[18] |
Maxim Sølund Kirsebom. Extreme value theory for random walks on homogeneous spaces. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4689-4717. doi: 10.3934/dcds.2014.34.4689 |
[19] |
Yong Fang, Patrick Foulon, Boris Hasselblatt. Longitudinal foliation rigidity and Lipschitz-continuous invariant forms for hyperbolic flows. Electronic Research Announcements, 2010, 17: 80-89. doi: 10.3934/era.2010.17.80 |
[20] |
Jaeyoo Choy, Hahng-Yun Chu. On the dynamics of flows on compact metric spaces. Communications on Pure and Applied Analysis, 2010, 9 (1) : 103-108. doi: 10.3934/cpaa.2010.9.103 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]