-
Previous Article
Values of random polynomials at integer points
- JMD Home
- This Volume
- Next Article
A quantitative Oppenheim theorem for generic ternary quadratic forms
1. | School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India |
2. | Department of Mathematics, Boston College, Chestnut Hill, MA 02467-3806, USA |
We prove a quantitative version of Oppenheim's conjecture for generic ternary indefinite quadratic forms. Our results are inspired by and analogous to recent results for diagonal quadratic forms due to Bourgain [
References:
[1] |
J. S. Athreya and G. A. Margulis,
Logarithm laws for unipotent flows. I, J. Mod. Dyn., 3 (2009), 359-378.
doi: 10.3934/jmd.2009.3.359. |
[2] |
J. S. Athreya and G. A. Margulis, Values of random polynomials at integer points, J. Mod. Dyn. , to appear. Google Scholar |
[3] |
J. Bourgain,
A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512.
doi: 10.1007/s11856-016-1385-7. |
[4] |
S. G. Dani and G. A. Margulis,
Limit distributions of orbits of unipotent flows and values of quadratic forms, Adv. in Soviet Math., 16 (1993), 91-137.
|
[5] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.
doi: 10.2307/120984. |
[6] |
A. Ghosh, A. Gorodnik and A. Nevo, Best possible rates of distribution of dense lattice orbits in homogeneous spaces, J. Reine Angew. Math. , to appear. Google Scholar |
[7] |
A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, arXiv:1801.01027, 2018. Google Scholar |
[8] |
A. Ghosh and D. Kelmer,
Shrinking targets for semisimple groups, Bull. Lond. Math. Soc., 49 (2017), 235-245.
doi: 10.1112/blms.12023. |
[9] |
A. Gorodnik and A. Nevo,
The Ergodic Theory of Lattice Subgroups,
Annals of Mathematics Studies, 172, Princeton University Press, Princeton, NJ, 2010. |
[10] |
E. Lindenstrauss and G. Margulis,
Effective estimates on indefinite ternary forms, Israel J. Math., 203 (2014), 445-499.
doi: 10.1007/s11856-014-1110-3. |
[11] |
G. A. Margulis,
Discrete subgroups and ergodic theory,
in Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, MA, 1989,377-398. |
[12] |
H. Oh,
Tempered subgroups and representations with minimal decay of matrix coefficients, Bull. Soc. Math. France, 126 (1998), 355-380.
doi: 10.24033/bsmf.2329. |
[13] |
C. A. Rogers,
Mean values over the space of lattices, Acta Math., 94 (1955), 249-287.
doi: 10.1007/BF02392493. |
[14] |
P. Sarnak,
Values at integers of binary quadratic forms,
in Harmonic Analysis and Number Theory (Montreal, PQ, 1996), CMS Conf. Proc., 21, AMS, Providence, RI, (1997), 181-203. |
show all references
References:
[1] |
J. S. Athreya and G. A. Margulis,
Logarithm laws for unipotent flows. I, J. Mod. Dyn., 3 (2009), 359-378.
doi: 10.3934/jmd.2009.3.359. |
[2] |
J. S. Athreya and G. A. Margulis, Values of random polynomials at integer points, J. Mod. Dyn. , to appear. Google Scholar |
[3] |
J. Bourgain,
A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512.
doi: 10.1007/s11856-016-1385-7. |
[4] |
S. G. Dani and G. A. Margulis,
Limit distributions of orbits of unipotent flows and values of quadratic forms, Adv. in Soviet Math., 16 (1993), 91-137.
|
[5] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.
doi: 10.2307/120984. |
[6] |
A. Ghosh, A. Gorodnik and A. Nevo, Best possible rates of distribution of dense lattice orbits in homogeneous spaces, J. Reine Angew. Math. , to appear. Google Scholar |
[7] |
A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, arXiv:1801.01027, 2018. Google Scholar |
[8] |
A. Ghosh and D. Kelmer,
Shrinking targets for semisimple groups, Bull. Lond. Math. Soc., 49 (2017), 235-245.
doi: 10.1112/blms.12023. |
[9] |
A. Gorodnik and A. Nevo,
The Ergodic Theory of Lattice Subgroups,
Annals of Mathematics Studies, 172, Princeton University Press, Princeton, NJ, 2010. |
[10] |
E. Lindenstrauss and G. Margulis,
Effective estimates on indefinite ternary forms, Israel J. Math., 203 (2014), 445-499.
doi: 10.1007/s11856-014-1110-3. |
[11] |
G. A. Margulis,
Discrete subgroups and ergodic theory,
in Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, MA, 1989,377-398. |
[12] |
H. Oh,
Tempered subgroups and representations with minimal decay of matrix coefficients, Bull. Soc. Math. France, 126 (1998), 355-380.
doi: 10.24033/bsmf.2329. |
[13] |
C. A. Rogers,
Mean values over the space of lattices, Acta Math., 94 (1955), 249-287.
doi: 10.1007/BF02392493. |
[14] |
P. Sarnak,
Values at integers of binary quadratic forms,
in Harmonic Analysis and Number Theory (Montreal, PQ, 1996), CMS Conf. Proc., 21, AMS, Providence, RI, (1997), 181-203. |
[1] |
Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365 |
[2] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[3] |
Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 |
[4] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[5] |
Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001 |
[6] |
Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020389 |
[7] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[8] |
Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020364 |
[9] |
Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049 |
[10] |
Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 681-695. doi: 10.3934/cpaa.2020285 |
[11] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[12] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[13] |
Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146 |
[14] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[15] |
Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048 |
[16] |
Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015 |
[17] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[18] |
Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300 |
[19] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040 |
[20] |
Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]