2018, 12: 9-16. doi: 10.3934/jmd.2018002

Values of random polynomials at integer points

1. 

Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195, USA

2. 

Department of Mathematics, Yale University, Box 208283, New Haven, CT 06520, USA

Received  April 12, 2017 Revised  November 10, 2017 Published  February 2018

Fund Project: This material is based upon work while both authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California during the Spring 2015 semester, supported by the National Science Foundation Grant DMS 0932078 000.
JSA: Partially supported by NSF CAREER grant DMS 1559860, NSF grant DMS 1069153, and grants DMS 1107452,1107263,1107367 "RNMS: GEometric structures And Representation varieties (the GEAR Network)".
GAM: Supported by NSF grant DMS 1265695.

Using classical results of Rogers [12, Theorem 1] bounding the L2-norm of Siegel transforms, we give bounds on the heights of approximate integral solutions of quadratic equations and error terms in the quantitative Oppenheim theorem of Eskin-Margulis-Mozes [6] for almost every quadratic form. Further applications yield quantitative information on the distribution of values of random polynomials at integral points.

Citation: Jayadev S. Athreya, Gregory A. Margulis. Values of random polynomials at integer points. Journal of Modern Dynamics, 2018, 12: 9-16. doi: 10.3934/jmd.2018002
References:
[1]

J. S. Athreya, Random affine lattices, Contemp. Math., 639 (2015), 160-174.   Google Scholar

[2]

J. S. Athreya and G. A. Margulis, Logarithm laws for unipotent flows. I, J. Mod. Dyn., 3 (2009), 359-378.  doi: 10.3934/jmd.2009.3.359.  Google Scholar

[3]

J. N. Bernstein, Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen., 6 (1972), 26-40.   Google Scholar

[4]

J. Bourgain, A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512.  doi: 10.1007/s11856-016-1385-7.  Google Scholar

[5]

A. Chambert-Loir and Y. Tschinkel, Igusa integrals and volume asymptotics in analytic and adelic geometry, Confluentes Math., 2 (2010), 351-429.  doi: 10.1142/S1793744210000223.  Google Scholar

[6]

A. EskinG. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math., 147 (1998), 93-141.  doi: 10.2307/120984.  Google Scholar

[7]

A. EskinG. Margulis and S. Mozes, Quadratic forms of signature (2, 2) and eigenvalue spacings on rectangular 2-tori, Ann. of Math., 161 (2005), 679-725.  doi: 10.4007/annals.2005.161.679.  Google Scholar

[8]

A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, arXiv:1801.01027, 2018. Google Scholar

[9]

A. Ghosh and D. Kelmer, A quantitative Oppenheim theorem for generic ternary quadratic forms, J. Mod. Dyn., 12 (2018), 1-12.  doi: 10.3934/jmd.2018001.  Google Scholar

[10]

G. Margulis, Formes quadratiques indéfinies et flots unipotents sur les spaces homogénes, C. R. Acad. Sci. Paris Ser. I, 304 (1987), 249-253.   Google Scholar

[11]

A. Oppenheim, The minima of indefinite quaternary quadratic forms, Proc. Nat. Acad. Sci. U.S.A., 15 (1929), 724-727.   Google Scholar

[12]

C. A. Rogers, The number of lattice points in a set, Proc. London Math. Soc., 6 (1956), 305-320.   Google Scholar

[13]

W. Schmidt, A metrical theorem in geometry of numbers, Trans. Amer. Math. Soc., 95 (1960), 516-529.  doi: 10.1090/S0002-9947-1960-0117222-9.  Google Scholar

[14]

C. L. Siegel, A mean value theorem in geometry of numbers, Ann. Math., 46 (1945), 340-347.  doi: 10.2307/1969027.  Google Scholar

[15]

J. M. VanderKam, Values at integers of homogeneous polynomials, Duke Math. J., 97 (1999), 379-412.  doi: 10.1215/S0012-7094-99-09716-8.  Google Scholar

show all references

References:
[1]

J. S. Athreya, Random affine lattices, Contemp. Math., 639 (2015), 160-174.   Google Scholar

[2]

J. S. Athreya and G. A. Margulis, Logarithm laws for unipotent flows. I, J. Mod. Dyn., 3 (2009), 359-378.  doi: 10.3934/jmd.2009.3.359.  Google Scholar

[3]

J. N. Bernstein, Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen., 6 (1972), 26-40.   Google Scholar

[4]

J. Bourgain, A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512.  doi: 10.1007/s11856-016-1385-7.  Google Scholar

[5]

A. Chambert-Loir and Y. Tschinkel, Igusa integrals and volume asymptotics in analytic and adelic geometry, Confluentes Math., 2 (2010), 351-429.  doi: 10.1142/S1793744210000223.  Google Scholar

[6]

A. EskinG. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math., 147 (1998), 93-141.  doi: 10.2307/120984.  Google Scholar

[7]

A. EskinG. Margulis and S. Mozes, Quadratic forms of signature (2, 2) and eigenvalue spacings on rectangular 2-tori, Ann. of Math., 161 (2005), 679-725.  doi: 10.4007/annals.2005.161.679.  Google Scholar

[8]

A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, arXiv:1801.01027, 2018. Google Scholar

[9]

A. Ghosh and D. Kelmer, A quantitative Oppenheim theorem for generic ternary quadratic forms, J. Mod. Dyn., 12 (2018), 1-12.  doi: 10.3934/jmd.2018001.  Google Scholar

[10]

G. Margulis, Formes quadratiques indéfinies et flots unipotents sur les spaces homogénes, C. R. Acad. Sci. Paris Ser. I, 304 (1987), 249-253.   Google Scholar

[11]

A. Oppenheim, The minima of indefinite quaternary quadratic forms, Proc. Nat. Acad. Sci. U.S.A., 15 (1929), 724-727.   Google Scholar

[12]

C. A. Rogers, The number of lattice points in a set, Proc. London Math. Soc., 6 (1956), 305-320.   Google Scholar

[13]

W. Schmidt, A metrical theorem in geometry of numbers, Trans. Amer. Math. Soc., 95 (1960), 516-529.  doi: 10.1090/S0002-9947-1960-0117222-9.  Google Scholar

[14]

C. L. Siegel, A mean value theorem in geometry of numbers, Ann. Math., 46 (1945), 340-347.  doi: 10.2307/1969027.  Google Scholar

[15]

J. M. VanderKam, Values at integers of homogeneous polynomials, Duke Math. J., 97 (1999), 379-412.  doi: 10.1215/S0012-7094-99-09716-8.  Google Scholar

[1]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[2]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[3]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[4]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[5]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[6]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[7]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[8]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[9]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[10]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[11]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[12]

Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014

[13]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021002

[14]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[15]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[16]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[17]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[18]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[19]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (189)
  • HTML views (1277)
  • Cited by (4)

Other articles
by authors

[Back to Top]