-
Previous Article
Genericity on curves and applications: pseudo-integrable billiards, Eaton lenses and gap distributions
- JMD Home
- This Volume
-
Next Article
Values of random polynomials at integer points
Joining measures for horocycle flows on abelian covers
Department of Mathematics, Yale University, New Haven, CT 06511, USA |
A celebrated result of Ratner from the eighties says that two horocycle flows on hyperbolic surfaces of finite area are either the same up to algebraic change of coordinates, or they have no non-trivial joinings. Recently, Mohammadi and Oh extended Ratner's theorem to horocycle flows on hyperbolic surfaces of infinite area but finite genus. In this paper, we present the first joining classification result of a horocycle flow on a hyperbolic surface of infinite genus: a $\mathbb{Z}$ or $\mathbb{Z}^2$-cover of a general compact hyperbolic surface.
References:
[1] |
M. Babillot, On the classification of invariant measures for horosphere foliations on nilpotent covers of negatively curved manifolds, in Random Walks and Geometry (ed. Kaimanovich), Walter de Gruyter, Berlin, 2004,319-335. |
[2] |
M. Babillot and F. Ledrappier,
Lalley's theorem on period orbits of hyperbolic flows, Ergod. Th. Dynam. Syst., 18 (1998), 17-39.
doi: 10.1017/S0143385798100330. |
[3] |
M. Babillot and F. Ledrappier, Geodesic paths and horocycle flow on abelian covers, in Lie Groups and Ergodic Theory (Mumbai, 1996), Tata Inst. Fund. Res. Stud. Math., 14, Tata Inst. Fund. Res., Bombay, 1998, 1-32. |
[4] |
Y. Benoist and J.-F. Quint,
Stationary measures and invariant subsets of homogeneous spaces, Ann. of Math., 174 (2011), 1111-1162.
doi: 10.4007/annals.2011.174.2.8. |
[5] |
Y. Benoist and H. Oh,
Fuchsian groups and compact hyperbolic surfaces, Enseign. Math., 62 (2016), 189-198.
doi: 10.4171/LEM/62-1/2-11. |
[6] |
R. Bowen and B. Marcus,
Unique ergodicity for horocycle foliations, Israel J. Math., 26 (1977), 43-67.
doi: 10.1007/BF03007655. |
[7] |
R. Bowen and D. Ruelle,
The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.
doi: 10.1007/BF01389848. |
[8] |
R. Bowen and C. Series,
Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 153-170.
|
[9] |
M. Burger,
Horocycle flow on geometrically finite surfaces, Duke Math. J., 61 (1990), 779-803.
doi: 10.1215/S0012-7094-90-06129-0. |
[10] |
M. Denker and W. Philipp,
Approximation by Brownian motion for Gibbs measures and flows under a function, Ergod. Th. Dynam. Syst., 4 (1984), 541-552.
|
[11] |
H. Furstenberg, The unique ergodicity of the horocycle flow, in Recent Advances in Topological Dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Math., 318, Springer, Berlin, 1972, 95-115. |
[12] |
L. Flaminio and R. J. Spatzier, Ratner's rigidity theorem for geometrically finite Fuchsian groups, in Dynamical Systems (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, 1988,180-195. |
[13] |
L. Flaminio and R. Spatzier,
Geometrically finite groups, Patterson-Sullivan measures and Ratner's rigidity theorem, Invent. Math., 99 (1990), 601-626.
doi: 10.1007/BF01234433. |
[14] |
R. A. Johnson,
Atomic and nonatomic measures, Proc. Amer. Math. Soc., 25 (1970), 650-655.
doi: 10.1090/S0002-9939-1970-0279266-8. |
[15] |
V. A. Kaimanovich,
Ergodic properties of the horocycle flow and classification of Fuchsian groups, J. Dynam. Control Systems, 6 (2000), 21-56.
doi: 10.1023/A:1009517621605. |
[16] |
A. Katsuda and T. Sunada,
Closed orbits in homology classes, Inst. Hautes études Sci. Publ. Math., 71 (1990), 5-32.
|
[17] |
D. Kleinbock and G. Margulis,
Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math., 148 (1998), 339-360.
doi: 10.2307/120997. |
[18] |
S. P. Lalley,
Renewal theorems in symbolic dynamics. with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math., 163 (1989), 1-55.
doi: 10.1007/BF02392732. |
[19] |
F. Ledrappier,
Horospheres on abelian covers, Bol. Soc. Brasil. Mat. (N.S.), 28 (1997), 363-375.
doi: 10.1007/BF01233398. |
[20] |
F. Ledrappier and O. Sarig,
Unique ergodicity for non-uniquely ergodic horocycle flows, Discrete Contin. Dyn. Syst., 16 (2006), 411-433.
doi: 10.3934/dcds.2006.16.411. |
[21] |
G. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces, in Dynamical Systems and Ergodic Theory (Warsaw, 1986), Banach Center Publ., 23, PWN, Warsaw, 1989,399-309. |
[22] |
G. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17, Springer-Verlag, Berlin, 1991. |
[23] |
G. Margulis and G. Tomanov,
Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., 116 (1994), 347-392.
doi: 10.1007/BF01231565. |
[24] |
C. McMullen, A. Mohammadi and H. Oh,
Geodesic planes in hyperbolic 3-manifolds, Invent. Math., 209 (2017), 425-461.
doi: 10.1007/s00222-016-0711-3. |
[25] |
A. Mohammadi and H. Oh,
Classification of joinings for Kleinian groups, Duke Math. J., 165 (2016), 2155-2223.
doi: 10.1215/00127094-3476807. |
[26] |
A. Mohammadi and H. Oh,
Invariant Radon measures for unipotent flows and products of Kleinian groups, Proc. Amer. Math. Soc., 146 (2018), 1469U-1479.
|
[27] |
M. Pollicott and R. Sharp,
Orbit counting for some discrete subgroups acting on simply connected manifolds with negative curvature, Invent. Math., 117 (1994), 275-302.
doi: 10.1007/BF01232242. |
[28] |
M. Ratner,
The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Israel J. Math., 16 (1973), 181-197.
doi: 10.1007/BF02757869. |
[29] |
M. Ratner,
Rigidity of horocycle flows, Ann. of Math., 2 (1982), 597-614.
doi: 10.2307/2007014. |
[30] |
M. Ratner,
Horocycle flows, joinings and rigidity of products, Ann. of Math., 118 (1983), 277-313.
doi: 10.2307/2007030. |
[31] |
M. Ratner,
On Raghunathan's measure conjecture, Ann. of Math., 134 (1991), 545-607.
doi: 10.2307/2944357. |
[32] |
M. Rees,
Checking ergodicity of some geodesic flows with inifinte Gibbs measure, Ergod. Th. Dynam. Sys., 1 (1981), 107-133.
|
[33] |
T. Roblin,
Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.), 95 (2003), ⅵ+96 pp.
|
[34] |
V. A. Rohlin, On basic concepts of measure theory, Mat. Sbornik, 67 (1949), 107-150. Google Scholar |
[35] |
O. Sarig,
Invariant measures for the horocycle flow on Abelian covers, Invent. Math., 157 (2004), 519-551.
doi: 10.1007/s00222-004-0357-4. |
[36] |
O. Sarig and B. Schapira, The generic points for the horocycle flow on a class of hyperbolic surfaces with infinite genus, Int. Math. Res. Not. IMRN 2008, Art. ID rnn 086, 37 pp. |
[37] |
C. Series,
Geometric Markov coding of geodesics on surfaces of constant negative curvature, Ergodic Theory Dynam. Systems, 6 (1986), 601-625.
|
[38] |
C. Series, Geometrical methods of symbolic coding, in Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (Trieste, 1989) (eds. T. Bedford, M. Keane and C. Series), Oxford Sci. Publ., Oxford Univ. Press, New York, 1991. |
[39] |
D. Winter,
Mixing of frame flow for rank one locally symmetric manifold and measure classification, Israel J. Math., 201 (2015), 467-507.
doi: 10.1007/s11856-015-1258-5. |
show all references
References:
[1] |
M. Babillot, On the classification of invariant measures for horosphere foliations on nilpotent covers of negatively curved manifolds, in Random Walks and Geometry (ed. Kaimanovich), Walter de Gruyter, Berlin, 2004,319-335. |
[2] |
M. Babillot and F. Ledrappier,
Lalley's theorem on period orbits of hyperbolic flows, Ergod. Th. Dynam. Syst., 18 (1998), 17-39.
doi: 10.1017/S0143385798100330. |
[3] |
M. Babillot and F. Ledrappier, Geodesic paths and horocycle flow on abelian covers, in Lie Groups and Ergodic Theory (Mumbai, 1996), Tata Inst. Fund. Res. Stud. Math., 14, Tata Inst. Fund. Res., Bombay, 1998, 1-32. |
[4] |
Y. Benoist and J.-F. Quint,
Stationary measures and invariant subsets of homogeneous spaces, Ann. of Math., 174 (2011), 1111-1162.
doi: 10.4007/annals.2011.174.2.8. |
[5] |
Y. Benoist and H. Oh,
Fuchsian groups and compact hyperbolic surfaces, Enseign. Math., 62 (2016), 189-198.
doi: 10.4171/LEM/62-1/2-11. |
[6] |
R. Bowen and B. Marcus,
Unique ergodicity for horocycle foliations, Israel J. Math., 26 (1977), 43-67.
doi: 10.1007/BF03007655. |
[7] |
R. Bowen and D. Ruelle,
The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.
doi: 10.1007/BF01389848. |
[8] |
R. Bowen and C. Series,
Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 153-170.
|
[9] |
M. Burger,
Horocycle flow on geometrically finite surfaces, Duke Math. J., 61 (1990), 779-803.
doi: 10.1215/S0012-7094-90-06129-0. |
[10] |
M. Denker and W. Philipp,
Approximation by Brownian motion for Gibbs measures and flows under a function, Ergod. Th. Dynam. Syst., 4 (1984), 541-552.
|
[11] |
H. Furstenberg, The unique ergodicity of the horocycle flow, in Recent Advances in Topological Dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Math., 318, Springer, Berlin, 1972, 95-115. |
[12] |
L. Flaminio and R. J. Spatzier, Ratner's rigidity theorem for geometrically finite Fuchsian groups, in Dynamical Systems (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, 1988,180-195. |
[13] |
L. Flaminio and R. Spatzier,
Geometrically finite groups, Patterson-Sullivan measures and Ratner's rigidity theorem, Invent. Math., 99 (1990), 601-626.
doi: 10.1007/BF01234433. |
[14] |
R. A. Johnson,
Atomic and nonatomic measures, Proc. Amer. Math. Soc., 25 (1970), 650-655.
doi: 10.1090/S0002-9939-1970-0279266-8. |
[15] |
V. A. Kaimanovich,
Ergodic properties of the horocycle flow and classification of Fuchsian groups, J. Dynam. Control Systems, 6 (2000), 21-56.
doi: 10.1023/A:1009517621605. |
[16] |
A. Katsuda and T. Sunada,
Closed orbits in homology classes, Inst. Hautes études Sci. Publ. Math., 71 (1990), 5-32.
|
[17] |
D. Kleinbock and G. Margulis,
Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math., 148 (1998), 339-360.
doi: 10.2307/120997. |
[18] |
S. P. Lalley,
Renewal theorems in symbolic dynamics. with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math., 163 (1989), 1-55.
doi: 10.1007/BF02392732. |
[19] |
F. Ledrappier,
Horospheres on abelian covers, Bol. Soc. Brasil. Mat. (N.S.), 28 (1997), 363-375.
doi: 10.1007/BF01233398. |
[20] |
F. Ledrappier and O. Sarig,
Unique ergodicity for non-uniquely ergodic horocycle flows, Discrete Contin. Dyn. Syst., 16 (2006), 411-433.
doi: 10.3934/dcds.2006.16.411. |
[21] |
G. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces, in Dynamical Systems and Ergodic Theory (Warsaw, 1986), Banach Center Publ., 23, PWN, Warsaw, 1989,399-309. |
[22] |
G. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17, Springer-Verlag, Berlin, 1991. |
[23] |
G. Margulis and G. Tomanov,
Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., 116 (1994), 347-392.
doi: 10.1007/BF01231565. |
[24] |
C. McMullen, A. Mohammadi and H. Oh,
Geodesic planes in hyperbolic 3-manifolds, Invent. Math., 209 (2017), 425-461.
doi: 10.1007/s00222-016-0711-3. |
[25] |
A. Mohammadi and H. Oh,
Classification of joinings for Kleinian groups, Duke Math. J., 165 (2016), 2155-2223.
doi: 10.1215/00127094-3476807. |
[26] |
A. Mohammadi and H. Oh,
Invariant Radon measures for unipotent flows and products of Kleinian groups, Proc. Amer. Math. Soc., 146 (2018), 1469U-1479.
|
[27] |
M. Pollicott and R. Sharp,
Orbit counting for some discrete subgroups acting on simply connected manifolds with negative curvature, Invent. Math., 117 (1994), 275-302.
doi: 10.1007/BF01232242. |
[28] |
M. Ratner,
The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Israel J. Math., 16 (1973), 181-197.
doi: 10.1007/BF02757869. |
[29] |
M. Ratner,
Rigidity of horocycle flows, Ann. of Math., 2 (1982), 597-614.
doi: 10.2307/2007014. |
[30] |
M. Ratner,
Horocycle flows, joinings and rigidity of products, Ann. of Math., 118 (1983), 277-313.
doi: 10.2307/2007030. |
[31] |
M. Ratner,
On Raghunathan's measure conjecture, Ann. of Math., 134 (1991), 545-607.
doi: 10.2307/2944357. |
[32] |
M. Rees,
Checking ergodicity of some geodesic flows with inifinte Gibbs measure, Ergod. Th. Dynam. Sys., 1 (1981), 107-133.
|
[33] |
T. Roblin,
Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.), 95 (2003), ⅵ+96 pp.
|
[34] |
V. A. Rohlin, On basic concepts of measure theory, Mat. Sbornik, 67 (1949), 107-150. Google Scholar |
[35] |
O. Sarig,
Invariant measures for the horocycle flow on Abelian covers, Invent. Math., 157 (2004), 519-551.
doi: 10.1007/s00222-004-0357-4. |
[36] |
O. Sarig and B. Schapira, The generic points for the horocycle flow on a class of hyperbolic surfaces with infinite genus, Int. Math. Res. Not. IMRN 2008, Art. ID rnn 086, 37 pp. |
[37] |
C. Series,
Geometric Markov coding of geodesics on surfaces of constant negative curvature, Ergodic Theory Dynam. Systems, 6 (1986), 601-625.
|
[38] |
C. Series, Geometrical methods of symbolic coding, in Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (Trieste, 1989) (eds. T. Bedford, M. Keane and C. Series), Oxford Sci. Publ., Oxford Univ. Press, New York, 1991. |
[39] |
D. Winter,
Mixing of frame flow for rank one locally symmetric manifold and measure classification, Israel J. Math., 201 (2015), 467-507.
doi: 10.1007/s11856-015-1258-5. |
[1] |
Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020375 |
[2] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[3] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[4] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[5] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[6] |
Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169 |
[7] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
[8] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020467 |
[9] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[10] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[11] |
Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49 |
[12] |
Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265 |
[13] |
Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455 |
[14] |
Nicholas Geneva, Nicholas Zabaras. Multi-fidelity generative deep learning turbulent flows. Foundations of Data Science, 2020, 2 (4) : 391-428. doi: 10.3934/fods.2020019 |
[15] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[16] |
Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122 |
[17] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
[18] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[19] |
Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021009 |
[20] |
Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]