
-
Previous Article
Periodic Reeb orbits on prequantization bundles
- JMD Home
- This Volume
-
Next Article
Joining measures for horocycle flows on abelian covers
Genericity on curves and applications: pseudo-integrable billiards, Eaton lenses and gap distributions
1. | Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland |
2. | Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, PR China |
3. | School of Mathematics, University of Bristol, Howard House, Queens Ave, BS8 1SD, Bristol, United Kingdom |
In this paper we prove results on Birkhoff and Oseledets genericity along certain curves in the space of affine lattices and in moduli spaces of translation surfaces. In the space of affine lattices $ASL_2( \mathbb{R})/ASL_2( \mathbb{Z})$, we prove that almost every point on a curve with some non-degeneracy assumptions is Birkhoff generic for the geodesic flow. This implies almost everywhere genericity for some curves in the locus of branched covers of the torus inside the stratum $\mathscr{H}(1,1)$ of translation surfaces. For these curves we also prove that almost every point is Oseledets generic for the Kontsevitch-Zorich cocycle, generalizing a recent result by Chaika and Eskin. As applications, we first consider a class of pseudo-integrable billiards, billiards in ellipses with barriers, and prove that for almost every parameter, the billiard flow is uniquely ergodic within the region of phase space in which it is trapped. We then consider any periodic array of Eaton retroreflector lenses, placed on vertices of a lattice, and prove that in almost every direction light rays are each confined to a band of finite width. Finally, a result on the gap distribution of fractional parts of the sequence of square roots of positive integers is also obtained.
References:
[1] |
A. Avila, A. Eskin and M. Möller,
Symplectic and isometric SL(2, R)-invariant subbundles of the Hodge bundle, J. Reine Angew. Math., 732 (2017), 1-20.
|
[2] |
A. Avila, S. Gouëzel and J.-Ch. Yoccoz,
Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143-211.
|
[3] |
A. Avila and P. Hubert, Recurrence for the wind-tree model, Ann. Inst. H. Poincaré Anal. Non Linéaire, (2018). inéaire, (2018).
doi: 10.1016/j.anihpc.2017.11.006. |
[4] |
M. Bainbridge,
Euler characteristics of Teichmüller curves in genus two, Geom. Topol., 11 (2007), 1887-2073.
doi: 10.2140/gt.2007.11.1887. |
[5] |
T. Browning and I. Vinogradov,
Effective Ratner theorem for $SL(2, \mathbb R) <\ltimes \mathbb R^2$ and gaps in $\sqrt n$ modulo $1$, J. Lond. Math. oc. (2), 94 (2016), 61-84.
doi: 10.1112/jlms/jdw025. |
[6] |
Y. Benoist and J.-F. Quint,
Stationary measures and invariant subsets of homogeneous spaces (Ⅱ), J. Amer. Math. Soc., 26 (2013), 659-734.
doi: 10.1090/S0894-0347-2013-00760-2. |
[7] |
J. Chaika and A. Eskin,
Every flat surface is Birkhoff and Oseledets generic in almost every direction, J. Mod. Dyn., 9 (2015), 1-23.
doi: 10.3934/jmd.2015.9.1. |
[8] |
V. Delecroix, P. Hubert and S. Lelièvre,
Diffusion for the periodic wind-tree model, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 1085-1110.
doi: 10.24033/asens.2234. |
[9] |
V. Dragović and M. Radnović,
Pseudo-integrable billiards and arithmetic dynamics, J. Mod. Dyn., 8 (2014), 109-132.
doi: 10.3934/jmd.2014.8.109. |
[10] |
M. Einsiedler and E. Lindenstrauss, Diagonal actions on locally homogeneous spaces, in Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010,155–241. |
[11] |
N. D. Elkies and C. T. McMullen,
Gaps in $\sqrt{n}$ mod $1$ and ergodic theory, Duke Math. J., 123 (2004), 95-139.
doi: 10.1215/S0012-7094-04-12314-0. |
[12] |
A. Eskin, S. Filip and A. Wright, The algebraic hull of the Kontsevich-Zorich cocycle, arXiv: 1702.02074. Google Scholar |
[13] |
A. Eskin, G. A. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.
doi: 10.2307/120984. |
[14] |
A. Eskin and M. Mirzakhani, Invariant and stationary measures for the $SL_2(\mathbb{R})$ action on moduli space, arXiv: 1302.3320. Google Scholar |
[15] |
A. Eskin, M. Mirzakhani and A. Mohammadi,
Isolation, equidistribution and orbit closures for the $SL(2, \mathbb{R})$ action on moduli space, Ann. of Math. (2), 182 (2015), 673-721.
|
[16] |
S. Filip,
Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, Invent. Math., 205 (2016), 617-670.
doi: 10.1007/s00222-015-0643-3. |
[17] |
G. Forni,
Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2), 155 (2002), 1-103.
doi: 10.2307/3062150. |
[18] |
R. Fox and R. Kershner,
Concerning the transitive properties of geodesics on a rational polyhedron, Duke Math. J., 2 (1936), 147-150.
doi: 10.1215/S0012-7094-36-00213-2. |
[19] |
K. Frączek and P. Hubert, Recurrence and non-ergodicity in generalized wind-tree models, Math. Nachr., to appear, arXiv: 1506.05884. Google Scholar |
[20] |
K. Frączek and M. Schmoll,
Directional localization of light rays in a periodic array of retro-reflector lenses, Nonlinearity, 27 (2014), 1689-1707.
doi: 10.1088/0951-7715/27/7/1689. |
[21] |
K. Frączek and C. Ulcigrai,
Non-ergodic $\mathbb{Z}$-periodic billiards and infinite translation surfaces, Invent. Math., 197 (2014), 241-298.
doi: 10.1007/s00222-013-0482-z. |
[22] |
I. Ya. Goldsheid and G. A. Margulis,
Lyapunov exponents of a product of random matrices, Russian Math. Surveys, 44 (1989), 11-71.
|
[23] |
Y. Guivarc'h and A. N. Starkov,
Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms, Ergodic Theory Dynam. Systems, 24 (2004), 767-802.
doi: 10.1017/S0143385703000440. |
[24] |
J. H. Hannay and T. M. Haeusserab,
Retroreflection by refraction, J. Mod. Opt., 40 (1993), 1437-1442.
doi: 10.1080/09500349314551501. |
[25] |
A. Katok and A. Zemljakov,
Topological transitivity of billiards in polygons, (Russian), Mat.Zametki, 18 (1975), 291-300.
|
[26] |
S. Kerckhoff, H. Masur and J. Smillie,
Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2), 124 (1986), 293-311.
doi: 10.2307/1971280. |
[27] |
D. Kleinbock and G. A. Margulis,
Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2), 148 (1998), 339-360.
doi: 10.2307/120997. |
[28] |
D. Kleinbock, R. Shi and B. Weiss,
Pointwise equidistribution with an error rate and with respect to unbounded functions, Math. Ann., 367 (2017), 857-879.
doi: 10.1007/s00208-016-1404-3. |
[29] |
R. Lyons,
Strong laws of large numbers for weakly correlated random variables, Michigan Math. J., 35 (1988), 353-359.
doi: 10.1307/mmj/1029003816. |
[30] |
H. Masur,
Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J., 66 (1992), 387-442.
|
[31] |
Y. Minsky and B. Weiss,
Nondivergence of horocyclic flows on moduli space, J. Reine Angew. Math., 552 (2002), 131-177.
|
[32] |
Y. Minsky and B. Weiss,
Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 245-284.
doi: 10.24033/asens.2214. |
[33] |
S. Mozes,
Epimorphic subgroups and invariant measures, Ergodic Theory Dynam. Systems, 15 (1995), 1207-1210.
doi: 10.1017/S0143385700009871. |
[34] |
M. Ratner,
On Raghunathan's measure conjecture, Ann. of Math. (2), 134 (1991), 545-607.
doi: 10.2307/2944357. |
[35] |
D. Ruelle,
Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 275-306.
|
[36] |
N. Shah,
Equidistribution of expanding translates of curves and Dirichlet's theorem on diophantine approximation, Invent. Math, 177 (2009), 509-532.
doi: 10.1007/s00222-009-0186-6. |
[37] |
N. Shah,
Limiting distributions of curves under geodesic flow on hyperbolic manifolds, Duke Math. J., 148 (2009), 251-279.
doi: 10.1215/00127094-2009-026. |
[38] |
R. Shi, Pointwise equidistribution for one parameter diagonalizable group action on homogeneous space, arXiv: 1405.2067. Google Scholar |
[39] |
R. Shi, Expanding cone and applications to homogeneous dynamics, arXiv: 1510.05256. Google Scholar |
[40] |
A. N. Starkov, Dynamical Systems on Homogeneous Spaces, Translations of Mathematical Monographs, 190, American Mathematical Society, Providence, RI, 2000. |
[41] |
S. Tabachnikov,
Geometry and Billiards, Student Mathematical Library, 30, American Mathematical Society, Providence, RI, 2005. |
[42] |
A. Zorich,
Deviation for interval exchange transformations, Ergodic Theory Dynam. Systems, 17 (1997), 1477-1499.
doi: 10.1017/S0143385797086215. |
[43] |
A. Zorich,
How do the leaves of a closed 1-form wind around a surface?, Amer. Math. Soc. Transl. Ser. 2, 197 (1999), 135-178.
|
show all references
References:
[1] |
A. Avila, A. Eskin and M. Möller,
Symplectic and isometric SL(2, R)-invariant subbundles of the Hodge bundle, J. Reine Angew. Math., 732 (2017), 1-20.
|
[2] |
A. Avila, S. Gouëzel and J.-Ch. Yoccoz,
Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143-211.
|
[3] |
A. Avila and P. Hubert, Recurrence for the wind-tree model, Ann. Inst. H. Poincaré Anal. Non Linéaire, (2018). inéaire, (2018).
doi: 10.1016/j.anihpc.2017.11.006. |
[4] |
M. Bainbridge,
Euler characteristics of Teichmüller curves in genus two, Geom. Topol., 11 (2007), 1887-2073.
doi: 10.2140/gt.2007.11.1887. |
[5] |
T. Browning and I. Vinogradov,
Effective Ratner theorem for $SL(2, \mathbb R) <\ltimes \mathbb R^2$ and gaps in $\sqrt n$ modulo $1$, J. Lond. Math. oc. (2), 94 (2016), 61-84.
doi: 10.1112/jlms/jdw025. |
[6] |
Y. Benoist and J.-F. Quint,
Stationary measures and invariant subsets of homogeneous spaces (Ⅱ), J. Amer. Math. Soc., 26 (2013), 659-734.
doi: 10.1090/S0894-0347-2013-00760-2. |
[7] |
J. Chaika and A. Eskin,
Every flat surface is Birkhoff and Oseledets generic in almost every direction, J. Mod. Dyn., 9 (2015), 1-23.
doi: 10.3934/jmd.2015.9.1. |
[8] |
V. Delecroix, P. Hubert and S. Lelièvre,
Diffusion for the periodic wind-tree model, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 1085-1110.
doi: 10.24033/asens.2234. |
[9] |
V. Dragović and M. Radnović,
Pseudo-integrable billiards and arithmetic dynamics, J. Mod. Dyn., 8 (2014), 109-132.
doi: 10.3934/jmd.2014.8.109. |
[10] |
M. Einsiedler and E. Lindenstrauss, Diagonal actions on locally homogeneous spaces, in Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010,155–241. |
[11] |
N. D. Elkies and C. T. McMullen,
Gaps in $\sqrt{n}$ mod $1$ and ergodic theory, Duke Math. J., 123 (2004), 95-139.
doi: 10.1215/S0012-7094-04-12314-0. |
[12] |
A. Eskin, S. Filip and A. Wright, The algebraic hull of the Kontsevich-Zorich cocycle, arXiv: 1702.02074. Google Scholar |
[13] |
A. Eskin, G. A. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.
doi: 10.2307/120984. |
[14] |
A. Eskin and M. Mirzakhani, Invariant and stationary measures for the $SL_2(\mathbb{R})$ action on moduli space, arXiv: 1302.3320. Google Scholar |
[15] |
A. Eskin, M. Mirzakhani and A. Mohammadi,
Isolation, equidistribution and orbit closures for the $SL(2, \mathbb{R})$ action on moduli space, Ann. of Math. (2), 182 (2015), 673-721.
|
[16] |
S. Filip,
Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, Invent. Math., 205 (2016), 617-670.
doi: 10.1007/s00222-015-0643-3. |
[17] |
G. Forni,
Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2), 155 (2002), 1-103.
doi: 10.2307/3062150. |
[18] |
R. Fox and R. Kershner,
Concerning the transitive properties of geodesics on a rational polyhedron, Duke Math. J., 2 (1936), 147-150.
doi: 10.1215/S0012-7094-36-00213-2. |
[19] |
K. Frączek and P. Hubert, Recurrence and non-ergodicity in generalized wind-tree models, Math. Nachr., to appear, arXiv: 1506.05884. Google Scholar |
[20] |
K. Frączek and M. Schmoll,
Directional localization of light rays in a periodic array of retro-reflector lenses, Nonlinearity, 27 (2014), 1689-1707.
doi: 10.1088/0951-7715/27/7/1689. |
[21] |
K. Frączek and C. Ulcigrai,
Non-ergodic $\mathbb{Z}$-periodic billiards and infinite translation surfaces, Invent. Math., 197 (2014), 241-298.
doi: 10.1007/s00222-013-0482-z. |
[22] |
I. Ya. Goldsheid and G. A. Margulis,
Lyapunov exponents of a product of random matrices, Russian Math. Surveys, 44 (1989), 11-71.
|
[23] |
Y. Guivarc'h and A. N. Starkov,
Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms, Ergodic Theory Dynam. Systems, 24 (2004), 767-802.
doi: 10.1017/S0143385703000440. |
[24] |
J. H. Hannay and T. M. Haeusserab,
Retroreflection by refraction, J. Mod. Opt., 40 (1993), 1437-1442.
doi: 10.1080/09500349314551501. |
[25] |
A. Katok and A. Zemljakov,
Topological transitivity of billiards in polygons, (Russian), Mat.Zametki, 18 (1975), 291-300.
|
[26] |
S. Kerckhoff, H. Masur and J. Smillie,
Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2), 124 (1986), 293-311.
doi: 10.2307/1971280. |
[27] |
D. Kleinbock and G. A. Margulis,
Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2), 148 (1998), 339-360.
doi: 10.2307/120997. |
[28] |
D. Kleinbock, R. Shi and B. Weiss,
Pointwise equidistribution with an error rate and with respect to unbounded functions, Math. Ann., 367 (2017), 857-879.
doi: 10.1007/s00208-016-1404-3. |
[29] |
R. Lyons,
Strong laws of large numbers for weakly correlated random variables, Michigan Math. J., 35 (1988), 353-359.
doi: 10.1307/mmj/1029003816. |
[30] |
H. Masur,
Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J., 66 (1992), 387-442.
|
[31] |
Y. Minsky and B. Weiss,
Nondivergence of horocyclic flows on moduli space, J. Reine Angew. Math., 552 (2002), 131-177.
|
[32] |
Y. Minsky and B. Weiss,
Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 245-284.
doi: 10.24033/asens.2214. |
[33] |
S. Mozes,
Epimorphic subgroups and invariant measures, Ergodic Theory Dynam. Systems, 15 (1995), 1207-1210.
doi: 10.1017/S0143385700009871. |
[34] |
M. Ratner,
On Raghunathan's measure conjecture, Ann. of Math. (2), 134 (1991), 545-607.
doi: 10.2307/2944357. |
[35] |
D. Ruelle,
Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 275-306.
|
[36] |
N. Shah,
Equidistribution of expanding translates of curves and Dirichlet's theorem on diophantine approximation, Invent. Math, 177 (2009), 509-532.
doi: 10.1007/s00222-009-0186-6. |
[37] |
N. Shah,
Limiting distributions of curves under geodesic flow on hyperbolic manifolds, Duke Math. J., 148 (2009), 251-279.
doi: 10.1215/00127094-2009-026. |
[38] |
R. Shi, Pointwise equidistribution for one parameter diagonalizable group action on homogeneous space, arXiv: 1405.2067. Google Scholar |
[39] |
R. Shi, Expanding cone and applications to homogeneous dynamics, arXiv: 1510.05256. Google Scholar |
[40] |
A. N. Starkov, Dynamical Systems on Homogeneous Spaces, Translations of Mathematical Monographs, 190, American Mathematical Society, Providence, RI, 2000. |
[41] |
S. Tabachnikov,
Geometry and Billiards, Student Mathematical Library, 30, American Mathematical Society, Providence, RI, 2005. |
[42] |
A. Zorich,
Deviation for interval exchange transformations, Ergodic Theory Dynam. Systems, 17 (1997), 1477-1499.
doi: 10.1017/S0143385797086215. |
[43] |
A. Zorich,
How do the leaves of a closed 1-form wind around a surface?, Amer. Math. Soc. Transl. Ser. 2, 197 (1999), 135-178.
|









[1] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[2] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[3] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[4] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[5] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[6] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[7] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[8] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[9] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[10] |
Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 |
[11] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[12] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]