
-
Previous Article
Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra
- JMD Home
- This Volume
-
Next Article
Genericity on curves and applications: pseudo-integrable billiards, Eaton lenses and gap distributions
Periodic Reeb orbits on prequantization bundles
1. | Mathematisches Institut, Universität Heidelberg, Mathematikon, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany |
2. | Mathematisches Institut, Universität zu Köln, Weyertal 86-90, D-50931 Köln, Germany |
3. | Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Ernst-Zermelo-Straße 1, D-79104 Freiburg, Germany |
In this paper, we prove that every graphical hypersurface in a prequantization bundle over a symplectic manifold $M$, pinched between two circle bundles whose ratio of radii is less than $\sqrt{2}$ carries either one short simple periodic orbit or carries at least cuplength $(M)+1$ simple periodic Reeb orbits.
References:
[1] |
P. Albers and D. Hein,
Cuplength estimates in Morse cohomology, J. Topol. Anal., 8 (2016), 243-272.
doi: 10.1142/S1793525316500102. |
[2] |
P. Albers and A. Momin,
Cup-length estimates for leaf-wise intersections, Math. Proc. Cambridge Philos. Soc., 149 (2010), 539-551.
doi: 10.1017/S0305004110000435. |
[3] |
M. Abreu and L. Macarini,
Multiplicity of periodic orbits for dynamically convex contact forms, J. Fixed Point Theory Appl., 19 (2017), 175-204.
doi: 10.1007/s11784-016-0348-2. |
[4] |
H. Berestycki, J.-M. Lasry, G. Mancini and B. Ruf,
Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math., 38 (1985), 253-289.
doi: 10.1002/cpa.3160380302. |
[5] |
F. Bourgeois and A. Oancea,
An exact sequence for contact-and symplectic homology, Invent. Math., 175 (2009), 611-680.
doi: 10.1007/s00222-008-0159-1. |
[6] |
F. Bourgeois, A Morse-Bott approach to contact homology, in Symplectic and Contact Topology: Interactions and Perspectives (Toronto, ON/Montreal, QC, 2001), Fields Inst. Commun., vol. 35, Amer. Math. Soc., Providence, RI, 2003, 55-77. |
[7] |
D. Cristofaro-Gardiner and M. Hutchings,
From one Reeb orbit to two, J. Differential Geom., 102 (2016), 25-36.
doi: 10.4310/jdg/1452002876. |
[8] |
I. Ekeland and J.-M. Lasry,
On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. of Math., 112 (1980), 283-319.
doi: 10.2307/1971148. |
[9] |
U. Frauenfelder,
The Arnold-Givental conjecture and moment Floer homology, Int. Math. Res. Not., (2004), 2179-2269.
doi: 10.1155/S1073792804133941. |
[10] |
H. Geiges, An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics, vol. 109, Cambridge University Press, 2008.
doi: 10. 1017/CBO9780511611438. |
[11] |
V. L. Ginzburg and B. Gürel, Lusternik-Schnirelman theory and closed Reeb orbits, 2016, arXiv: 1601.03092. |
[12] |
V. L. Ginzburg, D. Hein, U. Hryniewicz and L. Macarini,
Closed Reeb orbits on the sphere and symplectically degenerate maxima, Acta Math. Vietnam, 38 (2013), 55-78.
doi: 10.1007/s40306-012-0002-z. |
[13] |
V. L. Ginzburg,
On the existence and non-existence of closed trajectories for some Hamiltonian flows, Math. Z., 223 (1996), 397-409.
doi: 10.1007/BF02621606. |
[14] |
J. Gutt and J. Kang,
On the minimal number of periodic orbits on some hypersurfaces in ${{\mathbb{R}}^{2n}}$, Ann. Inst. Fourier (Grenoble), 66 (2016), 2485-2505.
doi: 10.5802/aif.3069. |
[15] |
J. Gutt,
The positive equivariant symplectic homology as an invariant for some contact manifolds, J. Symplectic Geom., 15 (2017), 1019-1069.
doi: 10.4310/JSG.2017.v15.n4.a3. |
[16] |
H. Hofer, K. Wysocki and E. Zehnder,
Properties of pseudo-holomorphic curves in symplectisations. Ⅱ. Embedding controls and algebraic invariants, Geom. Funct. Anal., 5 (1995), 270-328.
doi: 10.1007/BF01895669. |
[17] |
H. Hofer, K. Wysocki and E. Zehnder, Polyfolds and Fredholm theory I -Basic theory in M-polyfolds, 2014, arXiv: 1407.3185. |
[18] |
J. Kang,
Equivariant symplectic homology and multiple closed Reeb orbits, Internat. J. Math., 24 (2013), 1350096.
doi: 10.1142/S0129167X13500961. |
[19] |
E. Kerman,
Rigid constellations of closed Reeb orbits, Compos. Math., 153 (2017), 2394-2444.
doi: 10.1112/S0010437X17007448. |
[20] |
Y. Long and C. Zhu,
Closed characteristics on compact convex hypersurfaces in ${{\mathbf{R}}^{2n}}$, Ann. of Math., 155 (2002), 317-368.
doi: 10.2307/3062120. |
[21] |
M. Schwarz, Morse Homology, Progress in Mathematics, vol. 111, Birkhäuser Verlag, Basel, 1993.
doi: 10. 1007/978-3-0348-8577-5. |
[22] |
M. Schwarz, Cohomology Operations from S1-cobordisms in Floer Homology, Ph. D. -thesis, Swiss Federal Inst. of Techn. Zurich, Diss. ETH No. 11182, 1995. |
[23] |
D. A. Salamon and E. Zehnder,
Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math., 45 (1992), 1303-1360.
doi: 10.1002/cpa.3160451004. |
[24] |
C. H. Taubes,
The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., 11 (2007), 2117-2202.
doi: 10.2140/gt.2007.11.2117. |
[25] |
W. Wang, X. Hu and Y. Long,
Resonance identity, stability, and multiplicity of closed characteristics on compact convex hypersurfaces, Duke Math. J., 139 (2007), 411-462.
doi: 10.1215/S0012-7094-07-13931-0. |
show all references
References:
[1] |
P. Albers and D. Hein,
Cuplength estimates in Morse cohomology, J. Topol. Anal., 8 (2016), 243-272.
doi: 10.1142/S1793525316500102. |
[2] |
P. Albers and A. Momin,
Cup-length estimates for leaf-wise intersections, Math. Proc. Cambridge Philos. Soc., 149 (2010), 539-551.
doi: 10.1017/S0305004110000435. |
[3] |
M. Abreu and L. Macarini,
Multiplicity of periodic orbits for dynamically convex contact forms, J. Fixed Point Theory Appl., 19 (2017), 175-204.
doi: 10.1007/s11784-016-0348-2. |
[4] |
H. Berestycki, J.-M. Lasry, G. Mancini and B. Ruf,
Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math., 38 (1985), 253-289.
doi: 10.1002/cpa.3160380302. |
[5] |
F. Bourgeois and A. Oancea,
An exact sequence for contact-and symplectic homology, Invent. Math., 175 (2009), 611-680.
doi: 10.1007/s00222-008-0159-1. |
[6] |
F. Bourgeois, A Morse-Bott approach to contact homology, in Symplectic and Contact Topology: Interactions and Perspectives (Toronto, ON/Montreal, QC, 2001), Fields Inst. Commun., vol. 35, Amer. Math. Soc., Providence, RI, 2003, 55-77. |
[7] |
D. Cristofaro-Gardiner and M. Hutchings,
From one Reeb orbit to two, J. Differential Geom., 102 (2016), 25-36.
doi: 10.4310/jdg/1452002876. |
[8] |
I. Ekeland and J.-M. Lasry,
On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. of Math., 112 (1980), 283-319.
doi: 10.2307/1971148. |
[9] |
U. Frauenfelder,
The Arnold-Givental conjecture and moment Floer homology, Int. Math. Res. Not., (2004), 2179-2269.
doi: 10.1155/S1073792804133941. |
[10] |
H. Geiges, An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics, vol. 109, Cambridge University Press, 2008.
doi: 10. 1017/CBO9780511611438. |
[11] |
V. L. Ginzburg and B. Gürel, Lusternik-Schnirelman theory and closed Reeb orbits, 2016, arXiv: 1601.03092. |
[12] |
V. L. Ginzburg, D. Hein, U. Hryniewicz and L. Macarini,
Closed Reeb orbits on the sphere and symplectically degenerate maxima, Acta Math. Vietnam, 38 (2013), 55-78.
doi: 10.1007/s40306-012-0002-z. |
[13] |
V. L. Ginzburg,
On the existence and non-existence of closed trajectories for some Hamiltonian flows, Math. Z., 223 (1996), 397-409.
doi: 10.1007/BF02621606. |
[14] |
J. Gutt and J. Kang,
On the minimal number of periodic orbits on some hypersurfaces in ${{\mathbb{R}}^{2n}}$, Ann. Inst. Fourier (Grenoble), 66 (2016), 2485-2505.
doi: 10.5802/aif.3069. |
[15] |
J. Gutt,
The positive equivariant symplectic homology as an invariant for some contact manifolds, J. Symplectic Geom., 15 (2017), 1019-1069.
doi: 10.4310/JSG.2017.v15.n4.a3. |
[16] |
H. Hofer, K. Wysocki and E. Zehnder,
Properties of pseudo-holomorphic curves in symplectisations. Ⅱ. Embedding controls and algebraic invariants, Geom. Funct. Anal., 5 (1995), 270-328.
doi: 10.1007/BF01895669. |
[17] |
H. Hofer, K. Wysocki and E. Zehnder, Polyfolds and Fredholm theory I -Basic theory in M-polyfolds, 2014, arXiv: 1407.3185. |
[18] |
J. Kang,
Equivariant symplectic homology and multiple closed Reeb orbits, Internat. J. Math., 24 (2013), 1350096.
doi: 10.1142/S0129167X13500961. |
[19] |
E. Kerman,
Rigid constellations of closed Reeb orbits, Compos. Math., 153 (2017), 2394-2444.
doi: 10.1112/S0010437X17007448. |
[20] |
Y. Long and C. Zhu,
Closed characteristics on compact convex hypersurfaces in ${{\mathbf{R}}^{2n}}$, Ann. of Math., 155 (2002), 317-368.
doi: 10.2307/3062120. |
[21] |
M. Schwarz, Morse Homology, Progress in Mathematics, vol. 111, Birkhäuser Verlag, Basel, 1993.
doi: 10. 1007/978-3-0348-8577-5. |
[22] |
M. Schwarz, Cohomology Operations from S1-cobordisms in Floer Homology, Ph. D. -thesis, Swiss Federal Inst. of Techn. Zurich, Diss. ETH No. 11182, 1995. |
[23] |
D. A. Salamon and E. Zehnder,
Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math., 45 (1992), 1303-1360.
doi: 10.1002/cpa.3160451004. |
[24] |
C. H. Taubes,
The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., 11 (2007), 2117-2202.
doi: 10.2140/gt.2007.11.2117. |
[25] |
W. Wang, X. Hu and Y. Long,
Resonance identity, stability, and multiplicity of closed characteristics on compact convex hypersurfaces, Duke Math. J., 139 (2007), 411-462.
doi: 10.1215/S0012-7094-07-13931-0. |



[1] |
Kei Irie. Dense existence of periodic Reeb orbits and ECH spectral invariants. Journal of Modern Dynamics, 2015, 9: 357-363. doi: 10.3934/jmd.2015.9.357 |
[2] |
Peter Albers, Urs Frauenfelder. Floer homology for negative line bundles and Reeb chords in prequantization spaces. Journal of Modern Dynamics, 2009, 3 (3) : 407-456. doi: 10.3934/jmd.2009.3.407 |
[3] |
Alessandra Celletti, Sara Di Ruzza. Periodic and quasi--periodic orbits of the dissipative standard map. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 151-171. doi: 10.3934/dcdsb.2011.16.151 |
[4] |
Alex Eskin, Maryam Mirzakhani. Counting closed geodesics in moduli space. Journal of Modern Dynamics, 2011, 5 (1) : 71-105. doi: 10.3934/jmd.2011.5.71 |
[5] |
Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6541-6564. doi: 10.3934/dcds.2019284 |
[6] |
Corentin Boissy. Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3433-3457. doi: 10.3934/dcds.2012.32.3433 |
[7] |
Alexandre A. P. Rodrigues. Moduli for heteroclinic connections involving saddle-foci and periodic solutions. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3155-3182. doi: 10.3934/dcds.2015.35.3155 |
[8] |
Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177 |
[9] |
Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505 |
[10] |
Katrin Gelfert, Christian Wolf. On the distribution of periodic orbits. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 949-966. doi: 10.3934/dcds.2010.26.949 |
[11] |
Jacky Cresson, Christophe Guillet. Periodic orbits and Arnold diffusion. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 451-470. doi: 10.3934/dcds.2003.9.451 |
[12] |
Dong Eui Chang, David F. Chichka, Jerrold E. Marsden. Lyapunov-based transfer between elliptic Keplerian orbits. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 57-67. doi: 10.3934/dcdsb.2002.2.57 |
[13] |
Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961 |
[14] |
Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331 |
[15] |
Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012 |
[16] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[17] |
Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032 |
[18] |
Christopher Kumar Anand. Unitons and their moduli. Electronic Research Announcements, 1996, 2: 7-16. |
[19] |
Alexander Blokh, Clinton Curry, Lex Oversteegen. Density of orbits in laminations and the space of critical portraits. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2027-2039. doi: 10.3934/dcds.2012.32.2027 |
[20] |
E. Canalias, Josep J. Masdemont. Homoclinic and heteroclinic transfer trajectories between planar Lyapunov orbits in the sun-earth and earth-moon systems. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 261-279. doi: 10.3934/dcds.2006.14.261 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]