
-
Previous Article
Seifert manifolds admitting partially hyperbolic diffeomorphisms
- JMD Home
- This Volume
-
Next Article
Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra
Rotation number of contracted rotations
Aix-Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille, 163 avenue de Luminy, Case 907, 13288, Marseille Cédex 9, France |
Let $0<\lambda<1$. We consider the one-parameter family of circle $\lambda$-affine contractions $f_\delta:x \in [0,1) \mapsto \lambda x + \delta \; {\rm mod}\,1 $, where $0 \le \delta <1$. Let $\rho$ be the rotation number of the map $f_\delta$. We will give some numerical relations between the values of $\lambda,\delta$ and $\rho$, essentially using Hecke-Mahler series and a tree structure. When both parameters $\lambda$ and $\delta$ are algebraic numbers, we show that $\rho$ is a rational number. Moreover, in the case $\lambda$ and $\delta$ are rational, we give an explicit upper bound for the height of $\rho$ under some assumptions on $\lambda$.
References:
[1] |
B. Adamcewski and Y. Bugeaud,
Nombres réels de complexité sous-linéaire: Mesures d'irrationalité et de transcendance, J. Reine Angew. Math., 658 (2011), 65-98.
doi: 10.1515/CRELLE.2011.061. |
[2] |
A. S. Besicovitch and S. J. Taylor,
On the complementary intervals of a linear closed set of zero Lebesgue measure, Journal of the London Math. Soc., 29 (1954), 449-459.
doi: 10.1112/jlms/s1-29.4.449. |
[3] |
P. E. Böhmer,
Über die Transzendenz gewisser dyadischer Brüche, Math. Ann., 96 (1927), 367-377.
doi: 10.1007/BF01209172. |
[4] |
J. Brémont,
Dynamics of injective quasi-contractions, Ergodic. Th. and Dyn. Syst., 26 (2006), 19-44.
doi: 10.1017/S0143385705000386. |
[5] |
Y. Bugeaud,
Dynamique de certaines applications contractantes. linéaires par morceaux, sur [0,1], C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 575-578.
|
[6] |
Y. Bugeaud and J.-P. Conze,
Calcul de la dynamique d'une classe de transformations linéaires contractantes mod 1 et arbre de Farey, Acta Arithmetica, 88 (1999), 201-218.
doi: 10.4064/aa-88-3-201-218. |
[7] |
R. Coutinho, Dinâmica Simbólica Linear, Ph. D. Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, February 1999. Google Scholar |
[8] |
E. J. Ding and P. C. Hemmer,
Exact treatment of mode locking for a piecewise linear map, J. Statist. Phys., 46 (1987), 99-110.
doi: 10.1007/BF01010333. |
[9] |
O. Feely and L. O. Chua,
The effect of integrator leak in Σ-Δ modulation, IEEE Transactions on Circuits and Systems, 38 (1991), 1293-1305.
doi: 10.1109/31.99158. |
[10] |
J.-M. Gambaudo and C. Tresser,
On the dynamics of quasi-contractions, Bol. Coc. Bras. Mat., 19 (1988), 61-114.
doi: 10.1007/BF02584821. |
[11] |
A. Lasota and M. C. Mackey,
Noise and statistical periodicity, Physica, 28D (1987), 143-154.
doi: 10.1016/0167-2789(87)90125-4. |
[12] |
J. H. Loxton and A. J. van der Poorten,
Arithmetic properties of certain functions in several variables Ⅲ, Bull. Austral. Math. Soc., 16 (1977), 15-47.
doi: 10.1017/S0004972700022978. |
[13] |
J. H. Loxton and A. J. van der Poorten, Transcendence and algebraic independence by a method of Mahler, in Transcendence Theory: Advances and Applications (ed. A. Baker and D. W. Masser), Academic Press, 1977,211-226. |
[14] |
J. Nagumo and S. Sato, On a response characteristic of a mathematical neuron model, Kybernetik, 10 (1972), 155-164. Google Scholar |
[15] |
K. Nishioka, Mahler Functions and Transcendence, Lecture Notes in Mathematics, 1631, Springer-Verlag, Berlin, 1996.
doi: 10.1007/BFb0093672. |
[16] |
A. Nogueira and B. Pires,
Dynamics of piecewise contractions of the interval, Ergodic Theory and Dynamical Systems, 35 (2015), 2198-2215.
doi: 10.1017/etds.2014.16. |
[17] |
F. Rhodes and C. Thompson,
Rotation numbers for monotone functions on the circle, J. London Math. Soc. (2), 34 (1986), 360-368.
doi: 10.1112/jlms/s2-34.2.360. |
show all references
References:
[1] |
B. Adamcewski and Y. Bugeaud,
Nombres réels de complexité sous-linéaire: Mesures d'irrationalité et de transcendance, J. Reine Angew. Math., 658 (2011), 65-98.
doi: 10.1515/CRELLE.2011.061. |
[2] |
A. S. Besicovitch and S. J. Taylor,
On the complementary intervals of a linear closed set of zero Lebesgue measure, Journal of the London Math. Soc., 29 (1954), 449-459.
doi: 10.1112/jlms/s1-29.4.449. |
[3] |
P. E. Böhmer,
Über die Transzendenz gewisser dyadischer Brüche, Math. Ann., 96 (1927), 367-377.
doi: 10.1007/BF01209172. |
[4] |
J. Brémont,
Dynamics of injective quasi-contractions, Ergodic. Th. and Dyn. Syst., 26 (2006), 19-44.
doi: 10.1017/S0143385705000386. |
[5] |
Y. Bugeaud,
Dynamique de certaines applications contractantes. linéaires par morceaux, sur [0,1], C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 575-578.
|
[6] |
Y. Bugeaud and J.-P. Conze,
Calcul de la dynamique d'une classe de transformations linéaires contractantes mod 1 et arbre de Farey, Acta Arithmetica, 88 (1999), 201-218.
doi: 10.4064/aa-88-3-201-218. |
[7] |
R. Coutinho, Dinâmica Simbólica Linear, Ph. D. Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, February 1999. Google Scholar |
[8] |
E. J. Ding and P. C. Hemmer,
Exact treatment of mode locking for a piecewise linear map, J. Statist. Phys., 46 (1987), 99-110.
doi: 10.1007/BF01010333. |
[9] |
O. Feely and L. O. Chua,
The effect of integrator leak in Σ-Δ modulation, IEEE Transactions on Circuits and Systems, 38 (1991), 1293-1305.
doi: 10.1109/31.99158. |
[10] |
J.-M. Gambaudo and C. Tresser,
On the dynamics of quasi-contractions, Bol. Coc. Bras. Mat., 19 (1988), 61-114.
doi: 10.1007/BF02584821. |
[11] |
A. Lasota and M. C. Mackey,
Noise and statistical periodicity, Physica, 28D (1987), 143-154.
doi: 10.1016/0167-2789(87)90125-4. |
[12] |
J. H. Loxton and A. J. van der Poorten,
Arithmetic properties of certain functions in several variables Ⅲ, Bull. Austral. Math. Soc., 16 (1977), 15-47.
doi: 10.1017/S0004972700022978. |
[13] |
J. H. Loxton and A. J. van der Poorten, Transcendence and algebraic independence by a method of Mahler, in Transcendence Theory: Advances and Applications (ed. A. Baker and D. W. Masser), Academic Press, 1977,211-226. |
[14] |
J. Nagumo and S. Sato, On a response characteristic of a mathematical neuron model, Kybernetik, 10 (1972), 155-164. Google Scholar |
[15] |
K. Nishioka, Mahler Functions and Transcendence, Lecture Notes in Mathematics, 1631, Springer-Verlag, Berlin, 1996.
doi: 10.1007/BFb0093672. |
[16] |
A. Nogueira and B. Pires,
Dynamics of piecewise contractions of the interval, Ergodic Theory and Dynamical Systems, 35 (2015), 2198-2215.
doi: 10.1017/etds.2014.16. |
[17] |
F. Rhodes and C. Thompson,
Rotation numbers for monotone functions on the circle, J. London Math. Soc. (2), 34 (1986), 360-368.
doi: 10.1112/jlms/s2-34.2.360. |
[1] |
Arek Goetz. Dynamics of a piecewise rotation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 593-608. doi: 10.3934/dcds.1998.4.593 |
[2] |
Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597 |
[3] |
Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147 |
[4] |
Qiudong Wang. The diffusion time of the connecting orbit around rotation number zero for the monotone twist maps. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 255-274. doi: 10.3934/dcds.2000.6.255 |
[5] |
Tiago de Carvalho, Bruno Freitas. Birth of an arbitrary number of T-singularities in 3D piecewise smooth vector fields. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4851-4861. doi: 10.3934/dcdsb.2019034 |
[6] |
Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453 |
[7] |
Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581 |
[8] |
Frédéric Naud, Anke Pohl, Louis Soares. Fractal Weyl bounds and Hecke triangle groups. Electronic Research Announcements, 2019, 26: 24-35. doi: 10.3934/era.2019.26.003 |
[9] |
Peter Giesl, Holger Wendland. Construction of a contraction metric by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3843-3863. doi: 10.3934/dcdsb.2018333 |
[10] |
Armengol Gasull, Francesc Mañosas. Subseries and signed series. Communications on Pure & Applied Analysis, 2019, 18 (1) : 479-492. doi: 10.3934/cpaa.2019024 |
[11] |
Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218 |
[12] |
Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711 |
[13] |
Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169 |
[14] |
Sangtae Jeong, Chunlan Li. Measure-preservation criteria for a certain class of 1-lipschitz functions on Zp in mahler's expansion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3787-3804. doi: 10.3934/dcds.2017160 |
[15] |
Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617 |
[16] |
David Cowan. A billiard model for a gas of particles with rotation. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 101-109. doi: 10.3934/dcds.2008.22.101 |
[17] |
Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315 |
[18] |
Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056 |
[19] |
T. L. van Noorden, I. S. Pop, M. Röger. Crystal dissolution and precipitation in porous media: L$^1$-contraction and uniqueness. Conference Publications, 2007, 2007 (Special) : 1013-1020. doi: 10.3934/proc.2007.2007.1013 |
[20] |
Dirk Aeyels, Filip De Smet, Bavo Langerock. Area contraction in the presence of first integrals and almost global convergence. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 135-157. doi: 10.3934/dcds.2007.18.135 |
2018 Impact Factor: 0.295
Tools
Metrics
Other articles
by authors
[Back to Top]