2018, 12: 175-191. doi: 10.3934/jmd.2018007

Rotation number of contracted rotations

Aix-Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille, 163 avenue de Luminy, Case 907, 13288, Marseille Cédex 9, France

Received  April 18, 2017 Revised  February 28, 2018 Published  June 2018

Let $0<\lambda<1$. We consider the one-parameter family of circle $\lambda$-affine contractions $f_\delta:x \in [0,1) \mapsto \lambda x + \delta \; {\rm mod}\,1 $, where $0 \le \delta <1$. Let $\rho$ be the rotation number of the map $f_\delta$. We will give some numerical relations between the values of $\lambda,\delta$ and $\rho$, essentially using Hecke-Mahler series and a tree structure. When both parameters $\lambda$ and $\delta$ are algebraic numbers, we show that $\rho$ is a rational number. Moreover, in the case $\lambda$ and $\delta$ are rational, we give an explicit upper bound for the height of $\rho$ under some assumptions on $\lambda$.

Citation: Michel Laurent, Arnaldo Nogueira. Rotation number of contracted rotations. Journal of Modern Dynamics, 2018, 12: 175-191. doi: 10.3934/jmd.2018007
References:
[1]

B. Adamcewski and Y. Bugeaud, Nombres réels de complexité sous-linéaire: Mesures d'irrationalité et de transcendance, J. Reine Angew. Math., 658 (2011), 65-98.  doi: 10.1515/CRELLE.2011.061.

[2]

A. S. Besicovitch and S. J. Taylor, On the complementary intervals of a linear closed set of zero Lebesgue measure, Journal of the London Math. Soc., 29 (1954), 449-459.  doi: 10.1112/jlms/s1-29.4.449.

[3]

P. E. Böhmer, Über die Transzendenz gewisser dyadischer Brüche, Math. Ann., 96 (1927), 367-377.  doi: 10.1007/BF01209172.

[4]

J. Brémont, Dynamics of injective quasi-contractions, Ergodic. Th. and Dyn. Syst., 26 (2006), 19-44.  doi: 10.1017/S0143385705000386.

[5]

Y. Bugeaud, Dynamique de certaines applications contractantes. linéaires par morceaux, sur [0,1], C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 575-578. 

[6]

Y. Bugeaud and J.-P. Conze, Calcul de la dynamique d'une classe de transformations linéaires contractantes mod 1 et arbre de Farey, Acta Arithmetica, 88 (1999), 201-218.  doi: 10.4064/aa-88-3-201-218.

[7]

R. Coutinho, Dinâmica Simbólica Linear, Ph. D. Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, February 1999.

[8]

E. J. Ding and P. C. Hemmer, Exact treatment of mode locking for a piecewise linear map, J. Statist. Phys., 46 (1987), 99-110.  doi: 10.1007/BF01010333.

[9]

O. Feely and L. O. Chua, The effect of integrator leak in Σ-Δ modulation, IEEE Transactions on Circuits and Systems, 38 (1991), 1293-1305.  doi: 10.1109/31.99158.

[10]

J.-M. Gambaudo and C. Tresser, On the dynamics of quasi-contractions, Bol. Coc. Bras. Mat., 19 (1988), 61-114.  doi: 10.1007/BF02584821.

[11]

A. Lasota and M. C. Mackey, Noise and statistical periodicity, Physica, 28D (1987), 143-154.  doi: 10.1016/0167-2789(87)90125-4.

[12]

J. H. Loxton and A. J. van der Poorten, Arithmetic properties of certain functions in several variables Ⅲ, Bull. Austral. Math. Soc., 16 (1977), 15-47.  doi: 10.1017/S0004972700022978.

[13]

J. H. Loxton and A. J. van der Poorten, Transcendence and algebraic independence by a method of Mahler, in Transcendence Theory: Advances and Applications (ed. A. Baker and D. W. Masser), Academic Press, 1977,211-226.

[14]

J. Nagumo and S. Sato, On a response characteristic of a mathematical neuron model, Kybernetik, 10 (1972), 155-164. 

[15]

K. Nishioka, Mahler Functions and Transcendence, Lecture Notes in Mathematics, 1631, Springer-Verlag, Berlin, 1996. doi: 10.1007/BFb0093672.

[16]

A. Nogueira and B. Pires, Dynamics of piecewise contractions of the interval, Ergodic Theory and Dynamical Systems, 35 (2015), 2198-2215.  doi: 10.1017/etds.2014.16.

[17]

F. Rhodes and C. Thompson, Rotation numbers for monotone functions on the circle, J. London Math. Soc. (2), 34 (1986), 360-368.  doi: 10.1112/jlms/s2-34.2.360.

show all references

References:
[1]

B. Adamcewski and Y. Bugeaud, Nombres réels de complexité sous-linéaire: Mesures d'irrationalité et de transcendance, J. Reine Angew. Math., 658 (2011), 65-98.  doi: 10.1515/CRELLE.2011.061.

[2]

A. S. Besicovitch and S. J. Taylor, On the complementary intervals of a linear closed set of zero Lebesgue measure, Journal of the London Math. Soc., 29 (1954), 449-459.  doi: 10.1112/jlms/s1-29.4.449.

[3]

P. E. Böhmer, Über die Transzendenz gewisser dyadischer Brüche, Math. Ann., 96 (1927), 367-377.  doi: 10.1007/BF01209172.

[4]

J. Brémont, Dynamics of injective quasi-contractions, Ergodic. Th. and Dyn. Syst., 26 (2006), 19-44.  doi: 10.1017/S0143385705000386.

[5]

Y. Bugeaud, Dynamique de certaines applications contractantes. linéaires par morceaux, sur [0,1], C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 575-578. 

[6]

Y. Bugeaud and J.-P. Conze, Calcul de la dynamique d'une classe de transformations linéaires contractantes mod 1 et arbre de Farey, Acta Arithmetica, 88 (1999), 201-218.  doi: 10.4064/aa-88-3-201-218.

[7]

R. Coutinho, Dinâmica Simbólica Linear, Ph. D. Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, February 1999.

[8]

E. J. Ding and P. C. Hemmer, Exact treatment of mode locking for a piecewise linear map, J. Statist. Phys., 46 (1987), 99-110.  doi: 10.1007/BF01010333.

[9]

O. Feely and L. O. Chua, The effect of integrator leak in Σ-Δ modulation, IEEE Transactions on Circuits and Systems, 38 (1991), 1293-1305.  doi: 10.1109/31.99158.

[10]

J.-M. Gambaudo and C. Tresser, On the dynamics of quasi-contractions, Bol. Coc. Bras. Mat., 19 (1988), 61-114.  doi: 10.1007/BF02584821.

[11]

A. Lasota and M. C. Mackey, Noise and statistical periodicity, Physica, 28D (1987), 143-154.  doi: 10.1016/0167-2789(87)90125-4.

[12]

J. H. Loxton and A. J. van der Poorten, Arithmetic properties of certain functions in several variables Ⅲ, Bull. Austral. Math. Soc., 16 (1977), 15-47.  doi: 10.1017/S0004972700022978.

[13]

J. H. Loxton and A. J. van der Poorten, Transcendence and algebraic independence by a method of Mahler, in Transcendence Theory: Advances and Applications (ed. A. Baker and D. W. Masser), Academic Press, 1977,211-226.

[14]

J. Nagumo and S. Sato, On a response characteristic of a mathematical neuron model, Kybernetik, 10 (1972), 155-164. 

[15]

K. Nishioka, Mahler Functions and Transcendence, Lecture Notes in Mathematics, 1631, Springer-Verlag, Berlin, 1996. doi: 10.1007/BFb0093672.

[16]

A. Nogueira and B. Pires, Dynamics of piecewise contractions of the interval, Ergodic Theory and Dynamical Systems, 35 (2015), 2198-2215.  doi: 10.1017/etds.2014.16.

[17]

F. Rhodes and C. Thompson, Rotation numbers for monotone functions on the circle, J. London Math. Soc. (2), 34 (1986), 360-368.  doi: 10.1112/jlms/s2-34.2.360.

Figure 1.  A plot of $f_{\lambda, \delta}: I \to I$ , where $\lambda + \delta > 1$
Figure 2.  Plot of $F_{1/2, 3/4}(x) $ in the interval $-1\le x < 1$
[1]

Michel Laurent, Arnaldo Nogueira. Dynamics of 2-interval piecewise affine maps and Hecke-Mahler series. Journal of Modern Dynamics, 2021, 17: 33-63. doi: 10.3934/jmd.2021002

[2]

Arek Goetz. Dynamics of a piecewise rotation. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 593-608. doi: 10.3934/dcds.1998.4.593

[3]

Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597

[4]

Jan Bouwe van den Berg, Gabriel William Duchesne, Jean-Philippe Lessard. Rotation invariant patterns for a nonlinear Laplace-Beltrami equation: A Taylor-Chebyshev series approach. Journal of Computational Dynamics, 2022, 9 (2) : 253-278. doi: 10.3934/jcd.2022005

[5]

Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147

[6]

Xiaolei Zhang, Yanqin Xiong, Yi Zhang. The number of limit cycles by perturbing a piecewise linear system with three zones. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1833-1855. doi: 10.3934/cpaa.2022049

[7]

Qiudong Wang. The diffusion time of the connecting orbit around rotation number zero for the monotone twist maps. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 255-274. doi: 10.3934/dcds.2000.6.255

[8]

Tiago de Carvalho, Bruno Freitas. Birth of an arbitrary number of T-singularities in 3D piecewise smooth vector fields. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4851-4861. doi: 10.3934/dcdsb.2019034

[9]

Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453

[10]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[11]

Frédéric Naud, Anke Pohl, Louis Soares. Fractal Weyl bounds and Hecke triangle groups. Electronic Research Announcements, 2019, 26: 24-35. doi: 10.3934/era.2019.26.003

[12]

Peter Giesl, Holger Wendland. Construction of a contraction metric by meshless collocation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3843-3863. doi: 10.3934/dcdsb.2018333

[13]

Armengol Gasull, Francesc Mañosas. Subseries and signed series. Communications on Pure and Applied Analysis, 2019, 18 (1) : 479-492. doi: 10.3934/cpaa.2019024

[14]

Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711

[15]

Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169

[16]

Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218

[17]

Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

[18]

David Cowan. A billiard model for a gas of particles with rotation. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 101-109. doi: 10.3934/dcds.2008.22.101

[19]

Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315

[20]

Sangtae Jeong, Chunlan Li. Measure-preservation criteria for a certain class of 1-lipschitz functions on Zp in mahler's expansion. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3787-3804. doi: 10.3934/dcds.2017160

2021 Impact Factor: 0.641

Metrics

  • PDF downloads (203)
  • HTML views (1205)
  • Cited by (3)

Other articles
by authors

[Back to Top]