
-
Previous Article
Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure
- JMD Home
- This Volume
-
Next Article
Continuity of Lyapunov exponents for cocycles with invariant holonomies
Teichmüller geodesics with $ d$-dimensional limit sets
1. | Laboratoire de Mathématiques, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France |
2. | Mathematics Department, Stony Brook, University, Stony Brook, NY 11794-3651, USA |
3. | Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada |
We construct an example of a Teichmüller geodesic ray whose limit set in the Thurston boundary of Teichmüller space is a $ d$-dimensional simplex.
References:
[1] |
J. Brock, C. Leininger, B. Modami and K. Rafi,
Limit sets of Teichmüller geodesics with minimal nonuniquely ergodic vertical foliation, Ⅱ, J. Reine. Angew. Math., 737 (2018), 1-32.
doi: 10.1515/crelle-2015-0040. |
[2] |
J. Brock, C. Leininger, B. Modami and K. Rafi, Limit sets of Weil-Petersson geodesics, Int. Math. Res. Not. IMRN, (2018), arXiv: 1611.02197.
doi: 10.1093/imrn/rny002. |
[3] |
J Brock, C. Leininger, B. Modami and K. Rafi, Limit sets of Weil-Petersson geodesics with nonminimal ending laminations, arXiv: 1711.01663, 2017. |
[4] |
F. Bonahon,
The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), 139-162.
doi: 10.1007/BF01393996. |
[5] |
P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Progress in Mathematics, 106, Birkhäuser Boston Inc., Boston, MA, 1992. |
[6] |
J. Chaika, H. Masur and M. Wolf, Limits in $ \mathscr{PMF}$ of Teichmüller geodesics, preprint, arXiv: 1406.0564, 2014. |
[7] |
Y.-E. Choi, K. Rafi and C. Series,
Lines of minima and Teichmüller geodesics, Geom. Funct. Anal., 18 (2008), 698-754.
doi: 10.1007/s00039-008-0675-6. |
[8] |
A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les Surfaces, Astérisque, 66–67, Société Mathématique de France, 1979. |
[9] |
F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory, Mathematical Surveys and Monographs, 76, American Mathematical Society, Providence, RI, 2000. |
[10] |
J. Hubbard and H. A. Masur,
Quadratic differentials and foliations, Acta Math., 142 (1979), 221-274.
doi: 10.1007/BF02395062. |
[11] |
S. P. Kerckhoff,
The asymptotic geometry of Teichmüller space, Topology, 19 (1980), 23-41.
doi: 10.1016/0040-9383(80)90029-4. |
[12] |
A. Ya. Khinchin, Continued Fractions, The University of Chicago Press, Chicago, Ill.-London, 1964. |
[13] |
A. Lenzhen,
Teichmüller geodesics that do not have a limit in $ \mathscr{PMF}$, Geom. Topol., 12 (2008), 177-197.
doi: 10.2140/gt.2008.12.177. |
[14] |
C. Leininger, A. Lenzhen and K. Rafi,
Limit sets of Teichmüller geodesics with minimal non-uniquely ergodic vertical foliation, J. Reine. Angew. Math., 737 (2018), 1-32.
doi: 10.1515/crelle-2015-0040. |
[15] |
A. Lenzhen, K. Rafi and J. Tao,
Bounded combinatorics and the Lipschitz metric on Teichmüller space, Geom. Dedicata, 159 (2012), 353-371.
doi: 10.1007/s10711-011-9664-2. |
[16] |
H. A. Masur,
Two boundaries of Teichmüller space, Duke Math. J., 49 (1982), 183-190.
doi: 10.1215/S0012-7094-82-04912-2. |
[17] |
B. Maskit,
Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10 (1985), 381-386.
doi: 10.5186/aasfm.1985.1042. |
[18] |
Y. N. Minsky,
Harmonic maps, length, and energy in Teichmüller space, J. Differential Geom., 35 (1992), 151-217.
doi: 10.4310/jdg/1214447809. |
[19] |
H. A. Masur and Y. N. Minsky,
Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., 138 (1999), 103-149.
doi: 10.1007/s002220050343. |
[20] |
K. Rafi,
A combinatorial model for the Teichmüller metric, Geom. Funct. Anal., 17 (2007), 936-959.
doi: 10.1007/s00039-007-0615-x. |
[21] |
K. Rafi,
Thick-thin decomposition for quadratic differentials, Math. Res. Lett., 14 (2007), 333-341.
doi: 10.4310/MRL.2007.v14.n2.a14. |
[22] |
K. Rafi,
Hyperbolicity in Teichmüller space, Geom. Topol., 18 (2014), 3025-3053.
doi: 10.2140/gt.2014.18.3025. |
[23] |
S. A. Wolpert,
The length spectra as moduli for compact Riemann surfaces, Ann. of Math. (2), 109 (1979), 323-351.
doi: 10.2307/1971114. |
show all references
References:
[1] |
J. Brock, C. Leininger, B. Modami and K. Rafi,
Limit sets of Teichmüller geodesics with minimal nonuniquely ergodic vertical foliation, Ⅱ, J. Reine. Angew. Math., 737 (2018), 1-32.
doi: 10.1515/crelle-2015-0040. |
[2] |
J. Brock, C. Leininger, B. Modami and K. Rafi, Limit sets of Weil-Petersson geodesics, Int. Math. Res. Not. IMRN, (2018), arXiv: 1611.02197.
doi: 10.1093/imrn/rny002. |
[3] |
J Brock, C. Leininger, B. Modami and K. Rafi, Limit sets of Weil-Petersson geodesics with nonminimal ending laminations, arXiv: 1711.01663, 2017. |
[4] |
F. Bonahon,
The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), 139-162.
doi: 10.1007/BF01393996. |
[5] |
P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Progress in Mathematics, 106, Birkhäuser Boston Inc., Boston, MA, 1992. |
[6] |
J. Chaika, H. Masur and M. Wolf, Limits in $ \mathscr{PMF}$ of Teichmüller geodesics, preprint, arXiv: 1406.0564, 2014. |
[7] |
Y.-E. Choi, K. Rafi and C. Series,
Lines of minima and Teichmüller geodesics, Geom. Funct. Anal., 18 (2008), 698-754.
doi: 10.1007/s00039-008-0675-6. |
[8] |
A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les Surfaces, Astérisque, 66–67, Société Mathématique de France, 1979. |
[9] |
F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory, Mathematical Surveys and Monographs, 76, American Mathematical Society, Providence, RI, 2000. |
[10] |
J. Hubbard and H. A. Masur,
Quadratic differentials and foliations, Acta Math., 142 (1979), 221-274.
doi: 10.1007/BF02395062. |
[11] |
S. P. Kerckhoff,
The asymptotic geometry of Teichmüller space, Topology, 19 (1980), 23-41.
doi: 10.1016/0040-9383(80)90029-4. |
[12] |
A. Ya. Khinchin, Continued Fractions, The University of Chicago Press, Chicago, Ill.-London, 1964. |
[13] |
A. Lenzhen,
Teichmüller geodesics that do not have a limit in $ \mathscr{PMF}$, Geom. Topol., 12 (2008), 177-197.
doi: 10.2140/gt.2008.12.177. |
[14] |
C. Leininger, A. Lenzhen and K. Rafi,
Limit sets of Teichmüller geodesics with minimal non-uniquely ergodic vertical foliation, J. Reine. Angew. Math., 737 (2018), 1-32.
doi: 10.1515/crelle-2015-0040. |
[15] |
A. Lenzhen, K. Rafi and J. Tao,
Bounded combinatorics and the Lipschitz metric on Teichmüller space, Geom. Dedicata, 159 (2012), 353-371.
doi: 10.1007/s10711-011-9664-2. |
[16] |
H. A. Masur,
Two boundaries of Teichmüller space, Duke Math. J., 49 (1982), 183-190.
doi: 10.1215/S0012-7094-82-04912-2. |
[17] |
B. Maskit,
Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10 (1985), 381-386.
doi: 10.5186/aasfm.1985.1042. |
[18] |
Y. N. Minsky,
Harmonic maps, length, and energy in Teichmüller space, J. Differential Geom., 35 (1992), 151-217.
doi: 10.4310/jdg/1214447809. |
[19] |
H. A. Masur and Y. N. Minsky,
Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., 138 (1999), 103-149.
doi: 10.1007/s002220050343. |
[20] |
K. Rafi,
A combinatorial model for the Teichmüller metric, Geom. Funct. Anal., 17 (2007), 936-959.
doi: 10.1007/s00039-007-0615-x. |
[21] |
K. Rafi,
Thick-thin decomposition for quadratic differentials, Math. Res. Lett., 14 (2007), 333-341.
doi: 10.4310/MRL.2007.v14.n2.a14. |
[22] |
K. Rafi,
Hyperbolicity in Teichmüller space, Geom. Topol., 18 (2014), 3025-3053.
doi: 10.2140/gt.2014.18.3025. |
[23] |
S. A. Wolpert,
The length spectra as moduli for compact Riemann surfaces, Ann. of Math. (2), 109 (1979), 323-351.
doi: 10.2307/1971114. |


[1] |
Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135 |
[2] |
Martin Möller. Shimura and Teichmüller curves. Journal of Modern Dynamics, 2011, 5 (1) : 1-32. doi: 10.3934/jmd.2011.5.1 |
[3] |
Jeremy Kahn, Alex Wright. Hodge and Teichmüller. Journal of Modern Dynamics, 2022, 18: 149-160. doi: 10.3934/jmd.2022007 |
[4] |
Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489 |
[5] |
Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393 |
[6] |
Fei Yu, Kang Zuo. Weierstrass filtration on Teichmüller curves and Lyapunov exponents. Journal of Modern Dynamics, 2013, 7 (2) : 209-237. doi: 10.3934/jmd.2013.7.209 |
[7] |
David Aulicino, Chaya Norton. Shimura–Teichmüller curves in genus 5. Journal of Modern Dynamics, 2020, 16: 255-288. doi: 10.3934/jmd.2020009 |
[8] |
Guizhen Cui, Yunping Jiang, Anthony Quas. Scaling functions and Gibbs measures and Teichmüller spaces of circle endomorphisms. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 535-552. doi: 10.3934/dcds.1999.5.535 |
[9] |
Chi Po Choi, Xianfeng Gu, Lok Ming Lui. Subdivision connectivity remeshing via Teichmüller extremal map. Inverse Problems and Imaging, 2017, 11 (5) : 825-855. doi: 10.3934/ipi.2017039 |
[10] |
Matteo Costantini, André Kappes. The equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve. Journal of Modern Dynamics, 2017, 11: 17-41. doi: 10.3934/jmd.2017002 |
[11] |
Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations. Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139 |
[12] |
Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271 |
[13] |
Alex Wright. Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces. Journal of Modern Dynamics, 2012, 6 (3) : 405-426. doi: 10.3934/jmd.2012.6.405 |
[14] |
Stefano Marmi. Some arithmetical aspects of renormalization in Teichmüller dynamics: On the occasion of Corinna Ulcigrai winning the Brin Prize. Journal of Modern Dynamics, 2022, 18: 131-147. doi: 10.3934/jmd.2022006 |
[15] |
Jonathan Chaika, Yitwah Cheung, Howard Masur. Winning games for bounded geodesics in moduli spaces of quadratic differentials. Journal of Modern Dynamics, 2013, 7 (3) : 395-427. doi: 10.3934/jmd.2013.7.395 |
[16] |
Corentin Boissy. Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3433-3457. doi: 10.3934/dcds.2012.32.3433 |
[17] |
Alex Eskin, Maryam Mirzakhani. Counting closed geodesics in moduli space. Journal of Modern Dynamics, 2011, 5 (1) : 71-105. doi: 10.3934/jmd.2011.5.71 |
[18] |
Mary Wilkerson. Thurston's algorithm and rational maps from quadratic polynomial matings. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2403-2433. doi: 10.3934/dcdss.2019151 |
[19] |
Anton Zorich. Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials. Journal of Modern Dynamics, 2008, 2 (1) : 139-185. doi: 10.3934/jmd.2008.2.139 |
[20] |
Julien Grivaux, Pascal Hubert. Loci in strata of meromorphic quadratic differentials with fully degenerate Lyapunov spectrum. Journal of Modern Dynamics, 2014, 8 (1) : 61-73. doi: 10.3934/jmd.2014.8.61 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]