We construct an example of a Teichmüller geodesic ray whose limit set in the Thurston boundary of Teichmüller space is a $ d$-dimensional simplex.
Citation: |
Figure 3.
The interval when
[1] |
J. Brock, C. Leininger, B. Modami and K. Rafi, Limit sets of Teichmüller geodesics with minimal nonuniquely ergodic vertical foliation, Ⅱ, J. Reine. Angew. Math., 737 (2018), 1-32.
doi: 10.1515/crelle-2015-0040.![]() ![]() ![]() |
[2] |
J. Brock, C. Leininger, B. Modami and K. Rafi, Limit sets of Weil-Petersson geodesics, Int. Math. Res. Not. IMRN, (2018), arXiv: 1611.02197.
doi: 10.1093/imrn/rny002.![]() ![]() |
[3] |
J Brock, C. Leininger, B. Modami and K. Rafi, Limit sets of Weil-Petersson geodesics with nonminimal ending laminations, arXiv: 1711.01663, 2017.
![]() |
[4] |
F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), 139-162.
doi: 10.1007/BF01393996.![]() ![]() ![]() |
[5] |
P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Progress in Mathematics, 106, Birkhäuser Boston Inc., Boston, MA, 1992.
![]() ![]() |
[6] |
J. Chaika, H. Masur and M. Wolf, Limits in $ \mathscr{PMF}$ of Teichmüller geodesics, preprint, arXiv: 1406.0564, 2014.
![]() |
[7] |
Y.-E. Choi, K. Rafi and C. Series, Lines of minima and Teichmüller geodesics, Geom. Funct. Anal., 18 (2008), 698-754.
doi: 10.1007/s00039-008-0675-6.![]() ![]() ![]() |
[8] |
A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les Surfaces, Astérisque, 66–67, Société Mathématique de France, 1979.
![]() ![]() |
[9] |
F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory, Mathematical Surveys and Monographs, 76, American Mathematical Society, Providence, RI, 2000.
![]() ![]() |
[10] |
J. Hubbard and H. A. Masur, Quadratic differentials and foliations, Acta Math., 142 (1979), 221-274.
doi: 10.1007/BF02395062.![]() ![]() ![]() |
[11] |
S. P. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology, 19 (1980), 23-41.
doi: 10.1016/0040-9383(80)90029-4.![]() ![]() ![]() |
[12] |
A. Ya. Khinchin, Continued Fractions, The University of Chicago Press, Chicago, Ill.-London, 1964.
![]() ![]() |
[13] |
A. Lenzhen, Teichmüller geodesics that do not have a limit in $ \mathscr{PMF}$, Geom. Topol., 12 (2008), 177-197.
doi: 10.2140/gt.2008.12.177.![]() ![]() ![]() |
[14] |
C. Leininger, A. Lenzhen and K. Rafi, Limit sets of Teichmüller geodesics with minimal non-uniquely ergodic vertical foliation, J. Reine. Angew. Math., 737 (2018), 1-32.
doi: 10.1515/crelle-2015-0040.![]() ![]() ![]() |
[15] |
A. Lenzhen, K. Rafi and J. Tao, Bounded combinatorics and the Lipschitz metric on Teichmüller space, Geom. Dedicata, 159 (2012), 353-371.
doi: 10.1007/s10711-011-9664-2.![]() ![]() ![]() |
[16] |
H. A. Masur, Two boundaries of Teichmüller space, Duke Math. J., 49 (1982), 183-190.
doi: 10.1215/S0012-7094-82-04912-2.![]() ![]() ![]() |
[17] |
B. Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10 (1985), 381-386.
doi: 10.5186/aasfm.1985.1042.![]() ![]() ![]() |
[18] |
Y. N. Minsky, Harmonic maps, length, and energy in Teichmüller space, J. Differential Geom., 35 (1992), 151-217.
doi: 10.4310/jdg/1214447809.![]() ![]() ![]() |
[19] |
H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., 138 (1999), 103-149.
doi: 10.1007/s002220050343.![]() ![]() ![]() |
[20] |
K. Rafi, A combinatorial model for the Teichmüller metric, Geom. Funct. Anal., 17 (2007), 936-959.
doi: 10.1007/s00039-007-0615-x.![]() ![]() ![]() |
[21] |
K. Rafi, Thick-thin decomposition for quadratic differentials, Math. Res. Lett., 14 (2007), 333-341.
doi: 10.4310/MRL.2007.v14.n2.a14.![]() ![]() ![]() |
[22] |
K. Rafi, Hyperbolicity in Teichmüller space, Geom. Topol., 18 (2014), 3025-3053.
doi: 10.2140/gt.2014.18.3025.![]() ![]() ![]() |
[23] |
S. A. Wolpert, The length spectra as moduli for compact Riemann surfaces, Ann. of Math. (2), 109 (1979), 323-351.
doi: 10.2307/1971114.![]() ![]() ![]() |