
-
Previous Article
Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure
- JMD Home
- This Volume
-
Next Article
Continuity of Lyapunov exponents for cocycles with invariant holonomies
Teichmüller geodesics with $ d$-dimensional limit sets
1. | Laboratoire de Mathématiques, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France |
2. | Mathematics Department, Stony Brook, University, Stony Brook, NY 11794-3651, USA |
3. | Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada |
We construct an example of a Teichmüller geodesic ray whose limit set in the Thurston boundary of Teichmüller space is a $ d$-dimensional simplex.
References:
[1] |
J. Brock, C. Leininger, B. Modami and K. Rafi,
Limit sets of Teichmüller geodesics with minimal nonuniquely ergodic vertical foliation, Ⅱ, J. Reine. Angew. Math., 737 (2018), 1-32.
doi: 10.1515/crelle-2015-0040. |
[2] |
J. Brock, C. Leininger, B. Modami and K. Rafi, Limit sets of Weil-Petersson geodesics, Int. Math. Res. Not. IMRN, (2018), arXiv: 1611.02197.
doi: 10.1093/imrn/rny002. |
[3] |
J Brock, C. Leininger, B. Modami and K. Rafi, Limit sets of Weil-Petersson geodesics with nonminimal ending laminations, arXiv: 1711.01663, 2017. Google Scholar |
[4] |
F. Bonahon,
The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), 139-162.
doi: 10.1007/BF01393996. |
[5] |
P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Progress in Mathematics, 106, Birkhäuser Boston Inc., Boston, MA, 1992. |
[6] |
J. Chaika, H. Masur and M. Wolf, Limits in $ \mathscr{PMF}$ of Teichmüller geodesics, preprint, arXiv: 1406.0564, 2014. Google Scholar |
[7] |
Y.-E. Choi, K. Rafi and C. Series,
Lines of minima and Teichmüller geodesics, Geom. Funct. Anal., 18 (2008), 698-754.
doi: 10.1007/s00039-008-0675-6. |
[8] |
A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les Surfaces, Astérisque, 66–67, Société Mathématique de France, 1979. |
[9] |
F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory, Mathematical Surveys and Monographs, 76, American Mathematical Society, Providence, RI, 2000. |
[10] |
J. Hubbard and H. A. Masur,
Quadratic differentials and foliations, Acta Math., 142 (1979), 221-274.
doi: 10.1007/BF02395062. |
[11] |
S. P. Kerckhoff,
The asymptotic geometry of Teichmüller space, Topology, 19 (1980), 23-41.
doi: 10.1016/0040-9383(80)90029-4. |
[12] |
A. Ya. Khinchin, Continued Fractions, The University of Chicago Press, Chicago, Ill.-London, 1964. |
[13] |
A. Lenzhen,
Teichmüller geodesics that do not have a limit in $ \mathscr{PMF}$, Geom. Topol., 12 (2008), 177-197.
doi: 10.2140/gt.2008.12.177. |
[14] |
C. Leininger, A. Lenzhen and K. Rafi,
Limit sets of Teichmüller geodesics with minimal non-uniquely ergodic vertical foliation, J. Reine. Angew. Math., 737 (2018), 1-32.
doi: 10.1515/crelle-2015-0040. |
[15] |
A. Lenzhen, K. Rafi and J. Tao,
Bounded combinatorics and the Lipschitz metric on Teichmüller space, Geom. Dedicata, 159 (2012), 353-371.
doi: 10.1007/s10711-011-9664-2. |
[16] |
H. A. Masur,
Two boundaries of Teichmüller space, Duke Math. J., 49 (1982), 183-190.
doi: 10.1215/S0012-7094-82-04912-2. |
[17] |
B. Maskit,
Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10 (1985), 381-386.
doi: 10.5186/aasfm.1985.1042. |
[18] |
Y. N. Minsky,
Harmonic maps, length, and energy in Teichmüller space, J. Differential Geom., 35 (1992), 151-217.
doi: 10.4310/jdg/1214447809. |
[19] |
H. A. Masur and Y. N. Minsky,
Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., 138 (1999), 103-149.
doi: 10.1007/s002220050343. |
[20] |
K. Rafi,
A combinatorial model for the Teichmüller metric, Geom. Funct. Anal., 17 (2007), 936-959.
doi: 10.1007/s00039-007-0615-x. |
[21] |
K. Rafi,
Thick-thin decomposition for quadratic differentials, Math. Res. Lett., 14 (2007), 333-341.
doi: 10.4310/MRL.2007.v14.n2.a14. |
[22] |
K. Rafi,
Hyperbolicity in Teichmüller space, Geom. Topol., 18 (2014), 3025-3053.
doi: 10.2140/gt.2014.18.3025. |
[23] |
S. A. Wolpert,
The length spectra as moduli for compact Riemann surfaces, Ann. of Math. (2), 109 (1979), 323-351.
doi: 10.2307/1971114. |
show all references
References:
[1] |
J. Brock, C. Leininger, B. Modami and K. Rafi,
Limit sets of Teichmüller geodesics with minimal nonuniquely ergodic vertical foliation, Ⅱ, J. Reine. Angew. Math., 737 (2018), 1-32.
doi: 10.1515/crelle-2015-0040. |
[2] |
J. Brock, C. Leininger, B. Modami and K. Rafi, Limit sets of Weil-Petersson geodesics, Int. Math. Res. Not. IMRN, (2018), arXiv: 1611.02197.
doi: 10.1093/imrn/rny002. |
[3] |
J Brock, C. Leininger, B. Modami and K. Rafi, Limit sets of Weil-Petersson geodesics with nonminimal ending laminations, arXiv: 1711.01663, 2017. Google Scholar |
[4] |
F. Bonahon,
The geometry of Teichmüller space via geodesic currents, Invent. Math., 92 (1988), 139-162.
doi: 10.1007/BF01393996. |
[5] |
P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Progress in Mathematics, 106, Birkhäuser Boston Inc., Boston, MA, 1992. |
[6] |
J. Chaika, H. Masur and M. Wolf, Limits in $ \mathscr{PMF}$ of Teichmüller geodesics, preprint, arXiv: 1406.0564, 2014. Google Scholar |
[7] |
Y.-E. Choi, K. Rafi and C. Series,
Lines of minima and Teichmüller geodesics, Geom. Funct. Anal., 18 (2008), 698-754.
doi: 10.1007/s00039-008-0675-6. |
[8] |
A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les Surfaces, Astérisque, 66–67, Société Mathématique de France, 1979. |
[9] |
F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory, Mathematical Surveys and Monographs, 76, American Mathematical Society, Providence, RI, 2000. |
[10] |
J. Hubbard and H. A. Masur,
Quadratic differentials and foliations, Acta Math., 142 (1979), 221-274.
doi: 10.1007/BF02395062. |
[11] |
S. P. Kerckhoff,
The asymptotic geometry of Teichmüller space, Topology, 19 (1980), 23-41.
doi: 10.1016/0040-9383(80)90029-4. |
[12] |
A. Ya. Khinchin, Continued Fractions, The University of Chicago Press, Chicago, Ill.-London, 1964. |
[13] |
A. Lenzhen,
Teichmüller geodesics that do not have a limit in $ \mathscr{PMF}$, Geom. Topol., 12 (2008), 177-197.
doi: 10.2140/gt.2008.12.177. |
[14] |
C. Leininger, A. Lenzhen and K. Rafi,
Limit sets of Teichmüller geodesics with minimal non-uniquely ergodic vertical foliation, J. Reine. Angew. Math., 737 (2018), 1-32.
doi: 10.1515/crelle-2015-0040. |
[15] |
A. Lenzhen, K. Rafi and J. Tao,
Bounded combinatorics and the Lipschitz metric on Teichmüller space, Geom. Dedicata, 159 (2012), 353-371.
doi: 10.1007/s10711-011-9664-2. |
[16] |
H. A. Masur,
Two boundaries of Teichmüller space, Duke Math. J., 49 (1982), 183-190.
doi: 10.1215/S0012-7094-82-04912-2. |
[17] |
B. Maskit,
Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10 (1985), 381-386.
doi: 10.5186/aasfm.1985.1042. |
[18] |
Y. N. Minsky,
Harmonic maps, length, and energy in Teichmüller space, J. Differential Geom., 35 (1992), 151-217.
doi: 10.4310/jdg/1214447809. |
[19] |
H. A. Masur and Y. N. Minsky,
Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., 138 (1999), 103-149.
doi: 10.1007/s002220050343. |
[20] |
K. Rafi,
A combinatorial model for the Teichmüller metric, Geom. Funct. Anal., 17 (2007), 936-959.
doi: 10.1007/s00039-007-0615-x. |
[21] |
K. Rafi,
Thick-thin decomposition for quadratic differentials, Math. Res. Lett., 14 (2007), 333-341.
doi: 10.4310/MRL.2007.v14.n2.a14. |
[22] |
K. Rafi,
Hyperbolicity in Teichmüller space, Geom. Topol., 18 (2014), 3025-3053.
doi: 10.2140/gt.2014.18.3025. |
[23] |
S. A. Wolpert,
The length spectra as moduli for compact Riemann surfaces, Ann. of Math. (2), 109 (1979), 323-351.
doi: 10.2307/1971114. |


[1] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[2] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
[3] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[4] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[5] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[6] |
Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020364 |
[7] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
[8] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[9] |
Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015 |
[10] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[11] |
Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230 |
[12] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[13] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[14] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[15] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[16] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[17] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[18] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[19] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
[20] |
Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]