We study rational step function skew products over certain rotations of the circle proving ergodicity and bounded rational ergodicity when the rotation number is a quadratic irrational. The latter arises from a consideration of the asymptotic temporal statistics of an orbit as modelled by an associated affine random walk.
Citation: |
[1] |
J. Aaronson, M. Bromberg and H. Nakada, Discrepancy skew products and affine random walks, Israel J. Math., 221 (2017), no. 2,973-1010.
doi: 10.1007/s11856-017-1560-5.![]() ![]() ![]() |
[2] |
J. Aaronson and M. Keane, The visits to zero of some deterministic random walks, Proc. London Math. Soc., 44 (1982), no. 3,535-553.
doi: 10.1112/plms/s3-44.3.535.![]() ![]() ![]() |
[3] |
J. Beck,
Probabilistic Diophantine Approximation. Randomness in Lattice Point Counting, Springer Monographs in Mathematics, Springer, 2014.
doi: 10.1007/978-3-319-10741-7.![]() ![]() ![]() |
[4] |
M. Bromberg and C. Ulcigrai, A temporal central limit theorem for real-valued cocycles over
rotations, Ann. Inst. Henri Poincaré Probab. Stat., 54 (2018), no. 4, 2304-2334.
doi: 10.1214/17-AIHP872.![]() ![]() ![]() |
[5] |
J.-P. Conze, Equirépartition et ergodicité de transformations cylindriques, Séminaire de
Probabilités, I (Univ. Rennes, Rennes), (1976), 1-21.
![]() ![]() |
[6] |
J.-P. Conze and A. Piȩkniewska, On multiple ergodicity of affine cocycles over irrational rotations, Israel J. Math., 201 (2014), no. 2,543-584.
doi: 10.1007/s11856-014-0033-3.![]() ![]() ![]() |
[7] |
D. Dolgopyat and O. Sarig, Temporal distributional limit theorems for dynamical systems, J. Stat. Phys., 166 (2017), no. 3-4,680-713.
doi: 10.1007/s10955-016-1689-3.![]() ![]() ![]() |
[8] |
G. H. Hardy and E. M. Wright,
An Introduction to the Theory of Numbers, 3rd ed, Oxford, Clarendon Press, 1954.
![]() ![]() |
[9] |
H. Hennion and L. Hervé,
Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Lecture Notes in Mathematics, 1766, Springer-Verlag, Berlin, 2001.
doi: 10.1007/b87874.![]() ![]() ![]() |
[10] |
M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5-233.
doi: 10.1007/bf02684798.![]() ![]() ![]() |
[11] |
Y. Katznelson, Sigma-finite invariant measures for smooth mappings of the circle, J. Analyse Math., 31 (1977), 1-18.
doi: 10.1007/bf02813295.![]() ![]() ![]() |
[12] |
M. Keane, Irrational rotations and quasi-ergodic measures, Publications des Séminaires de
Mathématiques (Univ. Rennes, Rennes), Fasc. 1: Probabilités, 1970, 17–26.
![]() ![]() |
[13] |
A. Ya. Khintchine,
Continued Fractions, translated by Peter Wynn, P. Noordhoff, Ltd., Groningen, 1963.
![]() ![]() |
[14] |
C. Kraaikamp and H. Nakada, On normal numbers for continued fractions, Ergodic Theory Dynam. Systems, 20 (2000), no. 5, 1405-1421.
doi: 10.1017/S0143385700000766.![]() ![]() ![]() |
[15] |
L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Math., 53 (1857), 173-175.
doi: 10.1515/crll.1857.53.173.![]() ![]() ![]() |
[16] |
I. Oren, Ergodicity of cylinder flows arising from irregularities of distribution, Israel J. Math, 44 (1993), no. 2,127-138.
doi: 10.1007/BF02760616.![]() ![]() ![]() |
[17] |
K. Schmidt Cocycles on Ergodic Transformation Groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan, 1977.
![]() ![]() |
[18] |
O. Taussky, Eigenvalues of finite matrices: some topics concerning bounds for eigenvalues of
finite matrices, Survey of Numerical Analysis (ed. J. Todd), 1962, McGraw-Hill, New York,
279–297.
![]() ![]() |