\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The mapping class group of a shift of finite type

Dedicated to Roy Adler, in memory of his insight, humor, and kindness

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Let $(X_A,σ_{A})$ be a nontrivial irreducible shift of finite type (SFT), with $\mathscr{M}_A$ denoting its mapping class group: the group of flow equivalences of its mapping torus $\mathsf{S} X_A$, (i.e., self homeomorphisms of $\mathsf{S} X_A$ which respect the direction of the suspension flow) modulo the subgroup of flow equivalences of $\mathsf{S} X_A$ isotopic to the identity. We develop and apply machinery (flow codes, cohomology constraints) and provide context for the study of $\mathscr M_A$, and prove results including the following. $\mathscr{M}_A$ acts faithfully and $n$-transitively (for every $n$ in $\mathbb{N}$) by permutations on the set of circles of $\mathsf{S} X_A$. The center of $\mathscr{M}_A$ is trivial. The outer automorphism group of $\mathscr{M}_A$ is nontrivial. In many cases, $\text{Aut}(σ_{A})$ admits a nonspatial automorphism. For every SFT $(X_B,σ_B)$ flow equivalent to $(X_A,σ_{A})$, $\mathscr{M}_A$ contains embedded copies of ${\rm{Aut}}({\sigma _B})/\left\langle {{\sigma _B}} \right\rangle $, induced by return maps to invariant cross sections; but, elements of $\mathscr M_A$ not arising from flow equivalences with invariant cross sections are abundant. $\mathscr{M}_A$ is countable and has solvable word problem. $\mathscr{M}_A$ is not residually finite. Conjugacy classes of many (possibly all) involutions in $\mathscr M_A$ can be classified by the $G$-flow equivalence classes of associated $G$-SFTs, for $G = \mathbb{Z}/2\mathbb{Z}$. There are many open questions.

    Mathematics Subject Classification: Primary: 37B10; Secondary: 20F10, 20F38.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] F. Blanchard and G. Hansel, Systèmes codés, Theoret. Comput. Sci., 44 (1986), 17-49. 
    [2] R. Bowen and J. Franks, Homology for zero-dimensional nonwandering sets, Ann. of Math. (2), 106 (1977), 73-92.  doi: 10.2307/1971159.
    [3] M. Boyle, Flow equivalence of shifts of finite type via positive factorizations, Pacific J. Math., 204 (2002), 273-317.  doi: 10.2140/pjm.2002.204.273.
    [4] M. Boyle, Positive K-theory and symbolic dynamics, in Dynamics and Randomness (Santiago, 2000), Nonlinear Phenom. Complex Systems, 7, Kluwer Acad. Publ., 2002, 31-52.
    [5] M. Boyle, T. Carlsen and S. Eilers, Flow equivalence of G-SFTs, arXiv: 1512.05238, 2015.
    [6] M. Boyle, T. Carlsen and S. Eilers, Flow equivalence of sofic shifts, Israel J. Math., to appear; arXiv: 1511.03481, 2015.
    [7] M. BoyleT. Carlsen and S. Eilers, Flow equivalence and isotopy for subshifts, Dyn. Syst., 32 (2017), 305-325.  doi: 10.1080/14689367.2016.1207753.
    [8] M. Boyle and U.-R. Fiebig, The action of inert finite-order automorphisms on finite subsystems of the shift, Ergodic Theory Dynam. Systems, 11 (1991), 413-425. 
    [9] M. Boyle and D. Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math., 95 (1996), 169-210.  doi: 10.1007/BF02761039.
    [10] M. Boyle and D. Huang, Poset block equivalence of integral matrices, Trans. Amer. Math. Soc., 355 (2003), 3861-3886.  doi: 10.1090/S0002-9947-03-02947-7.
    [11] M. Boyle and W. Krieger, Periodic points and automorphisms of the shift, Trans. Amer. Math. Soc., 302 (1987), 125-149.  doi: 10.1090/S0002-9947-1987-0887501-5.
    [12] M. Boyle and W. Krieger, Almost Markov and shift equivalent sofic systems, in Dynamical Systems (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, 1988, 33-93.
    [13] M. BoyleD. Lind and D. Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc., 306 (1988), 71-114.  doi: 10.1090/S0002-9947-1988-0927684-2.
    [14] M. Boyle and S. Schmieding, Finite group extensions of shifts of finite type: K-theory, Parry and Livšic, Ergodic Theory Dynam. Systems, 37 (2017), 1026-1059.  doi: 10.1017/etds.2015.87.
    [15] M. Boyle and M. C. Sullivan, Equivariant flow equivalence for shifts of finite type, by matrix equivalence over group rings, Proc. London Math. Soc. (3), 91 (2005), 184-214.  doi: 10.1112/S0024611505015285.
    [16] M. Boyle and J. B. Wagoner, Positive algebraic K-theory and shifts of finite type, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 45-66.
    [17] V. Capraro and M. Lupini, Introduction to Sofic and Hyperlinear Groups and Connes' Embedding Conjecture, Lecture Notes in Mathematics, 2136, Springer, Cham, 2015. With an appendix by Vladimir Pestov.
    [18] S. Chuysurichay, Positive Rational Strong Shift Equivalence and the Mapping Class Group of a Shift of Finite Type, Thesis (Ph.D.)-University of Maryland, College Park, 2011, 95 pp, ProQuest LLC, Ann Arbor, MI.
    [19] E. M. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts using atypical equivalence classes, Discrete Anal., (2016), Paper No. 3, 28pp.
    [20] V. Cyr, J. Franks, B. Kra and S. Petite, Distortion and the automorphism group of a shift, J. Mod. Dyn., 13 (2018), 147–161. doi: 10.3934/jmd.2018015.
    [21] V. Cyr and B. Kra, The automorphism group of a minimal shift of stretched exponential growth, J. Mod. Dyn., 10 (2016), 483-495.  doi: 10.3934/jmd.2016.10.483.
    [22] S. DonosoF. DurandA. Maass and S. Petite, On automorphism groups of low complexity subshifts, Ergodic Theory Dynam. Systems, 36 (2016), 64-95.  doi: 10.1017/etds.2015.70.
    [23] S. EilersG. RestorffE. Ruiz and A. P. W. Sorensen, The complete classification of unital graph C*-algebras: Geometric and strong, Canad. J. Math., 70 (2018), 294-353.  doi: 10.4153/CJM-2017-016-7.
    [24] B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012.
    [25] U.-R. Fiebig, Periodic points and finite group actions on shifts of finite type, Ergodic Theory Dynam. Systems, 13 (1993), 485-514. 
    [26] R. J. Fokkink, The Structure of Trajectories, Thesis (Ph.D.)-Technische Universiteit Delft (The Netherlands), 1991, 112pp, ProQuest LLC, Ann Arbor, MI.
    [27] J. Franks, Flow equivalence of subshifts of finite type, Ergodic Theory Dynam. Systems, 4 (1984), 53-66. 
    [28] T. GiordanoI. F. Putnam and C. F. Skau, Topological orbit equivalence and $ C^*$-crossed products, J. Reine Angew. Math., 469 (1995), 51-111. 
    [29] T. GiordanoI. F. Putnam and C. F. Skau, Full groups of Cantor minimal systems, Israel J. Math., 111 (1999), 285-320.  doi: 10.1007/BF02810689.
    [30] R. I. Grigorchuk and K. S. Medinets, On the algebraic properties of topological full groups, Mat. Sb., 205 (2014), 87-108. 
    [31] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory, 3 (1969), 320-375. doi: 10.1007/BF01691062.
    [32] M. Hochman, On the automorphism groups of multidimensional shifts of finite type, Ergodic Theory Dynam. Systems, 30 (2010), 809-840.  doi: 10.1017/S0143385709000248.
    [33] K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math. (2), 178 (2013), 775-787.  doi: 10.4007/annals.2013.178.2.7.
    [34] K. H. Kim and F. W. Roush, On the automorphism groups of subshifts, Pure Math. Appl. Ser. B, 1 (1990), 203-230 (1991). 
    [35] K. H. Kim and F. W. Roush, Free $ Z_p$ actions on subshifts, Pure Math. Appl., 8 (1997), 293-322. 
    [36] K. H. KimF. W. Roush and J. B. Wagoner, Automorphisms of the dimension group and gyration numbers, J. Amer. Math. Soc., 5 (1992), 191-212.  doi: 10.1090/S0894-0347-1992-1124983-3.
    [37] K. H. Kim, F. W. Roush and S. G. Williams, Duality and its consequences for ordered cohomology of finite type subshifts, in Combinatorial & Computational Mathematics (Pohang, 2000), World Sci. Publ., River Edge, NJ, 2001, 243-265.
    [38] Y.-O. KimJ. Lee and K. K. Park, A zeta function for flip systems, Pacific J. Math., 209 (2003), 289-301.  doi: 10.2140/pjm.2003.209.289.
    [39] D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems, 4 (1984), 283-300. 
    [40] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
    [41] N. Long, Fixed point shifts of inert involutions, Discrete Contin. Dyn. Syst., 25 (2009), 1297-1317.  doi: 10.3934/dcds.2009.25.1297.
    [42] K. Matsumoto and H. Matui, Continuous orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Kyoto J. Math., 54 (2014), 863-877.  doi: 10.1215/21562261-2801849.
    [43] H. Matui, Topological full groups of one-sided shifts of finite type, J. Reine Angew. Math., 705 (2015), 35-84. 
    [44] M. Nasu, Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov shifts, in Dynamical Systems (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, 1988, 564-607.
    [45] W. Parry and D. Sullivan, A topological invariant of flows on 1-dimensional spaces, Topology, 14 (1975), 297-299.  doi: 10.1016/0040-9383(75)90012-9.
    [46] V. G. Pestov, Hyperlinear and sofic groups: A brief guide, Bull. Symbolic Logic, 14 (2008), 449-480.  doi: 10.2178/bsl/1231081461.
    [47] G. Restorff, Classification of Cuntz-Krieger algebras up to stable isomorphism, J. Reine Angew. Math., 598 (2006), 185-210. 
    [48] M. Rørdam, Classification of Cuntz-Krieger algebras, K-Theory, 9 (1995), 31-58.  doi: 10.1007/BF00965458.
    [49] J. Patrick Ryan, The shift and commutivity. Ⅱ, Math. Systems Theory, 8 (1974/75), 249-250.  doi: 10.1007/BF01762673.
    [50] V. Salo, Groups and monoids of cellular automata, in Cellular Automata and Discrete Complex Systems, Lecture Notes in Comput. Sci., 9099, Springer, Heidelberg, 2015, 17-45.
    [51] V. Salo and I. Törmä, Block maps between primitive uniform and Pisot substitutions, Ergodic Theory Dynam. Systems, 35 (2015), 2292-2310.  doi: 10.1017/etds.2014.29.
    [52] M. Schraudner, On the algebraic properties of the automorphism groups of countable-state Markov shifts, Ergodic Theory Dynam. Systems, 26 (2006), 551-583.  doi: 10.1017/S0143385705000507.
    [53] S. Schwartzman, Asymptotic cycles, Ann. of Math. (2), 66 (1957), 270-284.  doi: 10.2307/1969999.
    [54] J. B. Wagoner, Strong shift equivalence theory and the shift equivalence problem, Bull. Amer. Math. Soc. (N.S.), 36 (1999), 271-296.  doi: 10.1090/S0273-0979-99-00798-3.
    [55] J. B. Wagoner, Strong shift equivalence and $ K_2$ of the dual numbers, J. Reine Angew. Math., 521 (2000), 119-160, with an appendix by K. H. Kim and F. W. Roush.
    [56] B. Weiss, Sofic groups and dynamical systems, Ergodic Theory and Harmonic Analysis (Mumbai, 1999), Sankhyā Ser. A, 62 (2000), 350-359. 
  • 加载中
SHARE

Article Metrics

HTML views(2262) PDF downloads(220) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return