2018, 13: 221-250. doi: 10.3934/jmd.2018019

On the non-equivalence of the Bernoulli and $ K$ properties in dimension four

1. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

2. 

Department of Mathematics, The University of Chicago, 5734 S University Ave, Chicago, IL 60637, USA

Dedicated to the memory of Roy Adler

Received  December 31, 2016 Revised  June 09, 2017 Published  December 2018

Fund Project: FRH: Supported by NSF grants DMS 1201326 and DMS 1500947
KV: Supported by the National Science Foundation under Award DMS 1604796.

We study skew products where the base is a hyperbolic automorphism of $\mathbb{T}^2$, the fiber is a smooth area preserving flow on $\mathbb{T}^2$ with one fixed point (of high degeneracy) and the skewing function is a smooth non coboundary with non-zero integral. The fiber dynamics can be represented as a special flow over an irrational rotation and a roof function with one power singularity. We show that for a full measure set of rotations the corresponding skew product is $K$ and not Bernoulli. As a consequence we get a natural class of volume-preserving diffeomorphisms of $\mathbb{T}^4$ which are $K$ and not Bernoulli.

Citation: Adam Kanigowski, Federico Rodriguez Hertz, Kurt Vinhage. On the non-equivalence of the Bernoulli and $ K$ properties in dimension four. Journal of Modern Dynamics, 2018, 13: 221-250. doi: 10.3934/jmd.2018019
References:
[1]

L. M. Abramov and V. A. Rohlin, Entropy of a skew product of mappings with invariant measure, Vestnik Leningrad. Univ., 17 (1962), 5-13.   Google Scholar

[2]

R. L. Adler and P. C. Shields, Skew products of Bernoulli shifts with rotations, Israel J. Math., 12 (1972), 215-222.  doi: 10.1007/BF02790748.  Google Scholar

[3]

D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obšč., 23 (1970), 3-36.   Google Scholar

[4]

T. Austin, Scenery entropy as an invariant of RWRS processes, Preprint available at arXiv: 1405.1468. Google Scholar

[5]

A. AvilaM. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity Ⅰ: Geodesic flows, J. Eur. Math. Soc. (JEMS), 17 (2015), 1435-1462.  doi: 10.4171/JEMS/534.  Google Scholar

[6]

M. Benhenda, An uncountable family of pairwise non-Kakutani equivalent smooth diffeomorphisms, J. Anal. Math., 127 (2015), 129-178.  doi: 10.1007/s11854-015-0027-z.  Google Scholar

[7]

R. M. Burton and P. C. Shields, A mixing $ T$ for which $ T-T^{-1}$ is Bernoulli, Monatsh. Math., 95 (1983), 89-98.  doi: 10.1007/BF01323652.  Google Scholar

[8]

R. M. Burton, Jr., A non-Bernoulli skew product which is loosely Bernoulli, Israel J. Math., 35 (1980), 339-348.  doi: 10.1007/BF02760659.  Google Scholar

[9]

M. Denker and W. Philipp, Approximation by Brownian motion for Gibbs measures and flows under a function, Ergodic Theory Dynam. Systems, 4 (1984), 541-552.   Google Scholar

[10]

B. Fayad, G. Forni and A. Kanigowski, Lebesgue spectrum for area preserving flows on the two torus, submitted. Google Scholar

[11]

J. Feldman, New $ K$-automorphisms and a problem of Kakutani, Israel J. Math., 24 (1976), 16-38.  doi: 10.1007/BF02761426.  Google Scholar

[12]

S. A. Kalikow, $ T,\,T^{-1}$ transformation is not loosely Bernoulli, Ann. of Math. (2), 115 (1982), 393-409.  doi: 10.2307/1971397.  Google Scholar

[13]

A. Kanigowski, Slow entropy for some smooth flows on surfaces, accepted in Israel J. Math. Google Scholar

[14]

A. B. Katok, Monotone equivalence in ergodic theory, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 104-157.  doi: 10.1070/IM1977v011n01ABEH001696.  Google Scholar

[15]

A. Katok, Smooth non-Bernoulli $ K$-automorphisms, Invent. Math., 61 (1980), 291-299.  doi: 10.1007/BF01390069.  Google Scholar

[16]

A. Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, University Lecture Series, 30, American Mathematical Society, Providence, RI, 2003.  Google Scholar

[17]

A. B. Katok and E. A. Sataev, Standardness of rearrangement automorphisms of segments and flows on surfaces, Mat. Zametki, 20 (1976), 479-488.   Google Scholar

[18]

A. Ya. Khinchin, Continued Fractions, The University of Chicago Press, Chicago, Ill.-London, 1964.  Google Scholar

[19]

A. V. Kočergin, Mixing in special flows over a rearrangement of segments and in smooth flows on surfaces, Mat. Sb. (N.S.), 96/138 (1975), 471-502.   Google Scholar

[20]

A. Lamotte, Structure de certains produits semi directs, Ergodic Theory Dynam. Systems, 3 (1983), 559-566.  doi: 10.1017/S0143385700002145.  Google Scholar

[21]

R. Lyons, Strong laws of large numbers for weakly correlated random variables, Michigan Math. J., 35 (1988), 353-359.  doi: 10.1307/mmj/1029003816.  Google Scholar

[22]

D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Math., 4 (1970), 337-352.  doi: 10.1016/0001-8708(70)90029-0.  Google Scholar

[23]

D. S. Ornstein, An example of a Kolmogorov automorphism that is not a Bernoulli shift, Advances in Math., 10 (1973), 49-62.  doi: 10.1016/0001-8708(73)90097-2.  Google Scholar

[24]

J. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk, 32 (1977), 55-112,287.   Google Scholar

[25]

G. Ponce, A. Tahzibi and R. Varão, On the bernoulli property for certain partially hyperbolic diffeomorphisms, Preprint available at arXiv: 1603.08605. Google Scholar

[26]

M. Ratner, The Cartesian square of the horocycle flow is not loosely Bernoulli, Israel J. Math., 34 (1979), 72-96.  doi: 10.1007/BF02761825.  Google Scholar

[27]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics, in Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007, 35-87.  Google Scholar

[28]

V. A. Rohlin and Ja. G. Sinai, The structure and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR, 141 (1961), 1038-1041.   Google Scholar

[29]

D. J. Rudolph, Classifying the isometric extensions of a Bernoulli shift, J. Analyse Math., 34 (1978), 36-60.  doi: 10.1007/BF02790007.  Google Scholar

[30]

D. J. Rudolph, Asymptotically Brownian skew products give non-loosely Bernoulli $ K$-automorphisms, Invent. Math., 91 (1988), 105-128.  doi: 10.1007/BF01404914.  Google Scholar

[31]

P. C. Shields, Weak and very weak Bernoulli partitions, Monatsh. Math., 84 (1977), 133-142.  doi: 10.1007/BF01579598.  Google Scholar

[32]

P. C. Shields and R. Burton, A skew-product which is Bernoulli, Monatsh. Math., 86 (1978/79), 155-165.  doi: 10.1007/BF01320207.  Google Scholar

[33]

Ja. G. Sinai, On a weak isomorphism of transformations with invariant measure, Mat. Sb. (N.S.), 63 (1964), 23-42.   Google Scholar

[34]

J.-P. Thouvenot, Entropy, isomorphism and equivalence in ergodic theory, in Handbook of dynamical systems, Vol. 1A, 205-238, North-Holland, Amsterdam, 2002.  Google Scholar

[35]

B. Weiss, The isomorphism problem in ergodic theory, Bull. Amer. Math. Soc., 78 (1972), 668-684.  doi: 10.1090/S0002-9904-1972-12979-3.  Google Scholar

show all references

References:
[1]

L. M. Abramov and V. A. Rohlin, Entropy of a skew product of mappings with invariant measure, Vestnik Leningrad. Univ., 17 (1962), 5-13.   Google Scholar

[2]

R. L. Adler and P. C. Shields, Skew products of Bernoulli shifts with rotations, Israel J. Math., 12 (1972), 215-222.  doi: 10.1007/BF02790748.  Google Scholar

[3]

D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obšč., 23 (1970), 3-36.   Google Scholar

[4]

T. Austin, Scenery entropy as an invariant of RWRS processes, Preprint available at arXiv: 1405.1468. Google Scholar

[5]

A. AvilaM. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity Ⅰ: Geodesic flows, J. Eur. Math. Soc. (JEMS), 17 (2015), 1435-1462.  doi: 10.4171/JEMS/534.  Google Scholar

[6]

M. Benhenda, An uncountable family of pairwise non-Kakutani equivalent smooth diffeomorphisms, J. Anal. Math., 127 (2015), 129-178.  doi: 10.1007/s11854-015-0027-z.  Google Scholar

[7]

R. M. Burton and P. C. Shields, A mixing $ T$ for which $ T-T^{-1}$ is Bernoulli, Monatsh. Math., 95 (1983), 89-98.  doi: 10.1007/BF01323652.  Google Scholar

[8]

R. M. Burton, Jr., A non-Bernoulli skew product which is loosely Bernoulli, Israel J. Math., 35 (1980), 339-348.  doi: 10.1007/BF02760659.  Google Scholar

[9]

M. Denker and W. Philipp, Approximation by Brownian motion for Gibbs measures and flows under a function, Ergodic Theory Dynam. Systems, 4 (1984), 541-552.   Google Scholar

[10]

B. Fayad, G. Forni and A. Kanigowski, Lebesgue spectrum for area preserving flows on the two torus, submitted. Google Scholar

[11]

J. Feldman, New $ K$-automorphisms and a problem of Kakutani, Israel J. Math., 24 (1976), 16-38.  doi: 10.1007/BF02761426.  Google Scholar

[12]

S. A. Kalikow, $ T,\,T^{-1}$ transformation is not loosely Bernoulli, Ann. of Math. (2), 115 (1982), 393-409.  doi: 10.2307/1971397.  Google Scholar

[13]

A. Kanigowski, Slow entropy for some smooth flows on surfaces, accepted in Israel J. Math. Google Scholar

[14]

A. B. Katok, Monotone equivalence in ergodic theory, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 104-157.  doi: 10.1070/IM1977v011n01ABEH001696.  Google Scholar

[15]

A. Katok, Smooth non-Bernoulli $ K$-automorphisms, Invent. Math., 61 (1980), 291-299.  doi: 10.1007/BF01390069.  Google Scholar

[16]

A. Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, University Lecture Series, 30, American Mathematical Society, Providence, RI, 2003.  Google Scholar

[17]

A. B. Katok and E. A. Sataev, Standardness of rearrangement automorphisms of segments and flows on surfaces, Mat. Zametki, 20 (1976), 479-488.   Google Scholar

[18]

A. Ya. Khinchin, Continued Fractions, The University of Chicago Press, Chicago, Ill.-London, 1964.  Google Scholar

[19]

A. V. Kočergin, Mixing in special flows over a rearrangement of segments and in smooth flows on surfaces, Mat. Sb. (N.S.), 96/138 (1975), 471-502.   Google Scholar

[20]

A. Lamotte, Structure de certains produits semi directs, Ergodic Theory Dynam. Systems, 3 (1983), 559-566.  doi: 10.1017/S0143385700002145.  Google Scholar

[21]

R. Lyons, Strong laws of large numbers for weakly correlated random variables, Michigan Math. J., 35 (1988), 353-359.  doi: 10.1307/mmj/1029003816.  Google Scholar

[22]

D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Math., 4 (1970), 337-352.  doi: 10.1016/0001-8708(70)90029-0.  Google Scholar

[23]

D. S. Ornstein, An example of a Kolmogorov automorphism that is not a Bernoulli shift, Advances in Math., 10 (1973), 49-62.  doi: 10.1016/0001-8708(73)90097-2.  Google Scholar

[24]

J. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk, 32 (1977), 55-112,287.   Google Scholar

[25]

G. Ponce, A. Tahzibi and R. Varão, On the bernoulli property for certain partially hyperbolic diffeomorphisms, Preprint available at arXiv: 1603.08605. Google Scholar

[26]

M. Ratner, The Cartesian square of the horocycle flow is not loosely Bernoulli, Israel J. Math., 34 (1979), 72-96.  doi: 10.1007/BF02761825.  Google Scholar

[27]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics, in Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007, 35-87.  Google Scholar

[28]

V. A. Rohlin and Ja. G. Sinai, The structure and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR, 141 (1961), 1038-1041.   Google Scholar

[29]

D. J. Rudolph, Classifying the isometric extensions of a Bernoulli shift, J. Analyse Math., 34 (1978), 36-60.  doi: 10.1007/BF02790007.  Google Scholar

[30]

D. J. Rudolph, Asymptotically Brownian skew products give non-loosely Bernoulli $ K$-automorphisms, Invent. Math., 91 (1988), 105-128.  doi: 10.1007/BF01404914.  Google Scholar

[31]

P. C. Shields, Weak and very weak Bernoulli partitions, Monatsh. Math., 84 (1977), 133-142.  doi: 10.1007/BF01579598.  Google Scholar

[32]

P. C. Shields and R. Burton, A skew-product which is Bernoulli, Monatsh. Math., 86 (1978/79), 155-165.  doi: 10.1007/BF01320207.  Google Scholar

[33]

Ja. G. Sinai, On a weak isomorphism of transformations with invariant measure, Mat. Sb. (N.S.), 63 (1964), 23-42.   Google Scholar

[34]

J.-P. Thouvenot, Entropy, isomorphism and equivalence in ergodic theory, in Handbook of dynamical systems, Vol. 1A, 205-238, North-Holland, Amsterdam, 2002.  Google Scholar

[35]

B. Weiss, The isomorphism problem in ergodic theory, Bull. Amer. Math. Soc., 78 (1972), 668-684.  doi: 10.1090/S0002-9904-1972-12979-3.  Google Scholar

Figure 1.  The set $W^f$, with base and roof
Figure 3.  Horizontal Separation, $f$ and $\varphi$ have significant differences; the roof is hit a different number of times
Figure 2.  Vertical Separation, $f$ and $\varphi$ have moderate differences
Figure 4.  Breaking up $[0,N]$
Table 1.  Summary of development
LB Fiber LB Fiber Entropy Smooth $\int \varphi $
Ornstein [23] N/A Yes N/A No N/A
Feldman [11] No No 0 No $\not= 0$
Katok [15] No No 0 Yes $\not= 0$
Burton [8] Yes Yes Any No $\not= 0$
Kalikow [12] Yes No $> 0$ No $0$
Rudolph [30] Yes No $> 0$ Yes $0$
Theorem 1 Yes Yes 0 Yes $\not= 0$
LB Fiber LB Fiber Entropy Smooth $\int \varphi $
Ornstein [23] N/A Yes N/A No N/A
Feldman [11] No No 0 No $\not= 0$
Katok [15] No No 0 Yes $\not= 0$
Burton [8] Yes Yes Any No $\not= 0$
Kalikow [12] Yes No $> 0$ No $0$
Rudolph [30] Yes No $> 0$ Yes $0$
Theorem 1 Yes Yes 0 Yes $\not= 0$
[1]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[2]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[3]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[4]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[5]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[9]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[10]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[11]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[12]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[13]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[14]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[15]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[16]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[17]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[18]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[19]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[20]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (97)
  • HTML views (444)
  • Cited by (2)

[Back to Top]