-
Previous Article
Möbius disjointness for interval exchange transformations on three intervals
- JMD Home
- This Volume
-
Next Article
Siegel–Veech transforms are in $ \boldsymbol{L^2} $(with an appendix by Jayadev S. Athreya and Rene Rühr)
The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces
1. | IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil |
2. | Centre de Mathématiques Laurent Schwartz, CNRS (UMR 7640), École Polytechnique, 91128 Palaiseau, France |
3. | Collège de France, 3 Rue d'Ulm, Paris, Cedex 05, France |
We describe the Kontsevich–Zorich cocycle over an affine invariant orbifold coming from a (cyclic) covering construction inspired by works of Veech and McMullen. In particular, using the terminology in a recent paper of Filip, we show that all cases of Kontsevich–Zorich monodromies of $ SU(p,q) $ type are realized by appropriate covering constructions.
References:
[1] |
A. Avila, C. Matheus and J.-C. Yoccoz,
Zorich conjecture for hyperelliptic Rauzy–Veech groups, Math. Ann., 370 (2018), 785-809.
doi: 10.1007/s00208-017-1568-5. |
[2] |
A. Avila and M. Viana,
Simplicity of Lyapunov spectra: Proof of the Zorich–Kontsevich conjecture, Acta Math., 198 (2007), 1-56.
doi: 10.1007/s11511-007-0012-1. |
[3] |
S. Filip,
Zero Lyapunov exponents and monodromy of the Kontsevich-Zorich cocycle, Duke Math. J., 166 (2017), 657-706.
doi: 10.1215/00127094-3715806. |
[4] |
E. Gutkin and C. Judge,
Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J., 103 (2000), 191-213.
doi: 10.1215/S0012-7094-00-10321-3. |
[5] |
M. Kontsevich and A. Zorich,
Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[6] |
C. Matheus, M. Möller and J.-C. Yoccoz,
A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces, Invent. Math., 202 (2015), 333-425.
doi: 10.1007/s00222-014-0565-5. |
[7] |
C. McMullen,
Braid groups and Hodge theory, Math. Ann., 355 (2013), 893-946.
doi: 10.1007/s00208-012-0804-2. |
[8] |
J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. |
[9] |
W. Veech,
Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.
doi: 10.1007/BF01388890. |
show all references
References:
[1] |
A. Avila, C. Matheus and J.-C. Yoccoz,
Zorich conjecture for hyperelliptic Rauzy–Veech groups, Math. Ann., 370 (2018), 785-809.
doi: 10.1007/s00208-017-1568-5. |
[2] |
A. Avila and M. Viana,
Simplicity of Lyapunov spectra: Proof of the Zorich–Kontsevich conjecture, Acta Math., 198 (2007), 1-56.
doi: 10.1007/s11511-007-0012-1. |
[3] |
S. Filip,
Zero Lyapunov exponents and monodromy of the Kontsevich-Zorich cocycle, Duke Math. J., 166 (2017), 657-706.
doi: 10.1215/00127094-3715806. |
[4] |
E. Gutkin and C. Judge,
Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J., 103 (2000), 191-213.
doi: 10.1215/S0012-7094-00-10321-3. |
[5] |
M. Kontsevich and A. Zorich,
Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[6] |
C. Matheus, M. Möller and J.-C. Yoccoz,
A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces, Invent. Math., 202 (2015), 333-425.
doi: 10.1007/s00222-014-0565-5. |
[7] |
C. McMullen,
Braid groups and Hodge theory, Math. Ann., 355 (2013), 893-946.
doi: 10.1007/s00208-012-0804-2. |
[8] |
J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. |
[9] |
W. Veech,
Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.
doi: 10.1007/BF01388890. |
[1] |
Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135 |
[2] |
Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393 |
[3] |
Martin Möller. Shimura and Teichmüller curves. Journal of Modern Dynamics, 2011, 5 (1) : 1-32. doi: 10.3934/jmd.2011.5.1 |
[4] |
Jeremy Kahn, Alex Wright. Hodge and Teichmüller. Journal of Modern Dynamics, 2022, 18: 149-160. doi: 10.3934/jmd.2022007 |
[5] |
Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations. Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139 |
[6] |
Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271 |
[7] |
Stefano Marmi. Some arithmetical aspects of renormalization in Teichmüller dynamics: On the occasion of Corinna Ulcigrai winning the Brin Prize. Journal of Modern Dynamics, 2022, 18: 131-147. doi: 10.3934/jmd.2022006 |
[8] |
Giovanni Forni, Carlos Matheus, Anton Zorich. Square-tiled cyclic covers. Journal of Modern Dynamics, 2011, 5 (2) : 285-318. doi: 10.3934/jmd.2011.5.285 |
[9] |
Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489 |
[10] |
Fei Yu, Kang Zuo. Weierstrass filtration on Teichmüller curves and Lyapunov exponents. Journal of Modern Dynamics, 2013, 7 (2) : 209-237. doi: 10.3934/jmd.2013.7.209 |
[11] |
David Aulicino, Chaya Norton. Shimura–Teichmüller curves in genus 5. Journal of Modern Dynamics, 2020, 16: 255-288. doi: 10.3934/jmd.2020009 |
[12] |
Alex Eskin, Maxim Kontsevich, Anton Zorich. Lyapunov spectrum of square-tiled cyclic covers. Journal of Modern Dynamics, 2011, 5 (2) : 319-353. doi: 10.3934/jmd.2011.5.319 |
[13] |
Guizhen Cui, Yunping Jiang, Anthony Quas. Scaling functions and Gibbs measures and Teichmüller spaces of circle endomorphisms. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 535-552. doi: 10.3934/dcds.1999.5.535 |
[14] |
Chi Po Choi, Xianfeng Gu, Lok Ming Lui. Subdivision connectivity remeshing via Teichmüller extremal map. Inverse Problems and Imaging, 2017, 11 (5) : 825-855. doi: 10.3934/ipi.2017039 |
[15] |
Matteo Costantini, André Kappes. The equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve. Journal of Modern Dynamics, 2017, 11: 17-41. doi: 10.3934/jmd.2017002 |
[16] |
Terasan Niyomsataya, Ali Miri, Monica Nevins. Decoding affine reflection group codes with trellises. Advances in Mathematics of Communications, 2012, 6 (4) : 385-400. doi: 10.3934/amc.2012.6.385 |
[17] |
E. Kapsza, Gy. Károlyi, S. Kovács, G. Domokos. Regular and random patterns in complex bifurcation diagrams. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 519-540. doi: 10.3934/dcdsb.2003.3.519 |
[18] |
Anna Lenzhen, Babak Modami, Kasra Rafi. Teichmüller geodesics with $ d$-dimensional limit sets. Journal of Modern Dynamics, 2018, 12: 261-283. doi: 10.3934/jmd.2018010 |
[19] |
Alex Wright. Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces. Journal of Modern Dynamics, 2012, 6 (3) : 405-426. doi: 10.3934/jmd.2012.6.405 |
[20] |
Xuan Kien Phung. Shadowing for families of endomorphisms of generalized group shifts. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 285-299. doi: 10.3934/dcds.2021116 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]