We show that Sarnak's conjecture on Möbius disjointness holds for interval exchange transformations on three intervals (3-IETs) that satisfy a mild diophantine condition.
Citation: |
Figure 3.
Closing the curves. We complete the vertical segment
[1] | M. Boshernitzan and A. Nogueira, Generalized eigenfunctions of interval exchange maps, Ergodic Theory Dynam. Sys., 24 (2004), 697-705. doi: 10.1017/S0143385704000021. |
[2] | J. Bourgain, On the correlation of the Moebius function with rank-one systems, J. Anal. Math., 120 (2013), 105-130. doi: 10.1007/s11854-013-0016-z. |
[3] | J. Bourgain, P. Sarnak and T. Ziegler, Disjointness of Moebius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., 28, Springer, New York, 2013, 67â€"83. doi: 10.1007/978-1-4614-4075-8_5. |
[4] | H. Davenport, On some infinite series involving arithmetical functions (Ⅱ), Quart. J. of Math., 8 (1937), 313-320. doi: 10.1093/qmath/os-8.1.313. |
[5] | E. H. El Abdalaoui, M. Lemańczyk and T. de la Rue, On spectral disjointness of powers for rank-one transformations and Möbius orthogonality, J. Funct. Anal., 266 (2014), 284-317. doi: 10.1016/j.jfa.2013.09.005. |
[6] | S. Ferenczi and C. Mauduit, On Sarnak's conjecture and Veech's question for interval exchanges, J. Anal. Math., 134 (2018), 545-573. doi: 10.1007/s11854-018-0017-z. |
[7] | B. Green and T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2), 175 (2012), 541-566. doi: 10.4007/annals.2012.175.2.3. |
[8] | I. Katai, A remark on a theorem of H. Daboussi, Acta Math. Hungar., 47 (1986), 223-225. doi: 10.1007/BF01949145. |
[9] | A. Khinchin, Continued Fractions, with a preface by B. V. Gnedenko, translated from the third (1961) Russian edition, reprint of the 1964 translation, Dover, 1997. |
[10] | A. Harper, A different proof of a finite version of Vinogradov's bilinear sum inequality, online notes, 2011. |
[11] | M. Ratner, Horocycle flows, joinings and rigidity of products, Ann. of Math. (2), 118 (1983), 277-313. doi: 10.2307/2007030. |
[12] | D. Rudolph, Fundamentals of Measurable Dynamics. Ergodic Theory on Lebesgue Spaces, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1990. |
[13] | Z. Wang, Möbius disjointness for analytic skew products, Invent. Math., 209 (2017), 175-196. doi: 10.1007/s00222-016-0707-z. |