2019, 14: 55-86. doi: 10.3934/jmd.2019003

Möbius disjointness for interval exchange transformations on three intervals

1. 

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

2. 

Department of Mathematics, University of Chicago, Chicago, IL 60637, USA

Received  June 13, 2017 Revised  May 27, 2018 Published  March 2019

Fund Project: JC: Supported in part by NSF grants DMS-135500 and DMS-1452762 and the Sloan foundation.
AE: Supported in part by NSF grant DMS 1201422 and the Simons Foundation.

We show that Sarnak's conjecture on Möbius disjointness holds for interval exchange transformations on three intervals (3-IETs) that satisfy a mild diophantine condition.

Citation: Jon Chaika, Alex Eskin. Möbius disjointness for interval exchange transformations on three intervals. Journal of Modern Dynamics, 2019, 14: 55-86. doi: 10.3934/jmd.2019003
References:
[1]

M. Boshernitzan and A. Nogueira, Generalized eigenfunctions of interval exchange maps, Ergodic Theory Dynam. Sys., 24 (2004), 697-705. doi: 10.1017/S0143385704000021. Google Scholar

[2]

J. Bourgain, On the correlation of the Moebius function with rank-one systems, J. Anal. Math., 120 (2013), 105-130. doi: 10.1007/s11854-013-0016-z. Google Scholar

[3]

J. Bourgain, P. Sarnak and T. Ziegler, Disjointness of Moebius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., 28, Springer, New York, 2013, 67â€"83. doi: 10.1007/978-1-4614-4075-8_5. Google Scholar

[4]

H. Davenport, On some infinite series involving arithmetical functions (Ⅱ), Quart. J. of Math., 8 (1937), 313-320. doi: 10.1093/qmath/os-8.1.313. Google Scholar

[5]

E. H. El AbdalaouiM. Lemańczyk and T. de la Rue, On spectral disjointness of powers for rank-one transformations and Möbius orthogonality, J. Funct. Anal., 266 (2014), 284-317. doi: 10.1016/j.jfa.2013.09.005. Google Scholar

[6]

S. Ferenczi and C. Mauduit, On Sarnak's conjecture and Veech's question for interval exchanges, J. Anal. Math., 134 (2018), 545-573. doi: 10.1007/s11854-018-0017-z. Google Scholar

[7]

B. Green and T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2), 175 (2012), 541-566. doi: 10.4007/annals.2012.175.2.3. Google Scholar

[8]

I. Katai, A remark on a theorem of H. Daboussi, Acta Math. Hungar., 47 (1986), 223-225. doi: 10.1007/BF01949145. Google Scholar

[9]

A. Khinchin, Continued Fractions, with a preface by B. V. Gnedenko, translated from the third (1961) Russian edition, reprint of the 1964 translation, Dover, 1997. Google Scholar

[10]

A. Harper, A different proof of a finite version of Vinogradov's bilinear sum inequality, online notes, 2011.Google Scholar

[11]

M. Ratner, Horocycle flows, joinings and rigidity of products, Ann. of Math. (2), 118 (1983), 277-313. doi: 10.2307/2007030. Google Scholar

[12] D. Rudolph, Fundamentals of Measurable Dynamics. Ergodic Theory on Lebesgue Spaces, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1990. Google Scholar
[13]

Z. Wang, Möbius disjointness for analytic skew products, Invent. Math., 209 (2017), 175-196. doi: 10.1007/s00222-016-0707-z. Google Scholar

show all references

References:
[1]

M. Boshernitzan and A. Nogueira, Generalized eigenfunctions of interval exchange maps, Ergodic Theory Dynam. Sys., 24 (2004), 697-705. doi: 10.1017/S0143385704000021. Google Scholar

[2]

J. Bourgain, On the correlation of the Moebius function with rank-one systems, J. Anal. Math., 120 (2013), 105-130. doi: 10.1007/s11854-013-0016-z. Google Scholar

[3]

J. Bourgain, P. Sarnak and T. Ziegler, Disjointness of Moebius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., 28, Springer, New York, 2013, 67â€"83. doi: 10.1007/978-1-4614-4075-8_5. Google Scholar

[4]

H. Davenport, On some infinite series involving arithmetical functions (Ⅱ), Quart. J. of Math., 8 (1937), 313-320. doi: 10.1093/qmath/os-8.1.313. Google Scholar

[5]

E. H. El AbdalaouiM. Lemańczyk and T. de la Rue, On spectral disjointness of powers for rank-one transformations and Möbius orthogonality, J. Funct. Anal., 266 (2014), 284-317. doi: 10.1016/j.jfa.2013.09.005. Google Scholar

[6]

S. Ferenczi and C. Mauduit, On Sarnak's conjecture and Veech's question for interval exchanges, J. Anal. Math., 134 (2018), 545-573. doi: 10.1007/s11854-018-0017-z. Google Scholar

[7]

B. Green and T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2), 175 (2012), 541-566. doi: 10.4007/annals.2012.175.2.3. Google Scholar

[8]

I. Katai, A remark on a theorem of H. Daboussi, Acta Math. Hungar., 47 (1986), 223-225. doi: 10.1007/BF01949145. Google Scholar

[9]

A. Khinchin, Continued Fractions, with a preface by B. V. Gnedenko, translated from the third (1961) Russian edition, reprint of the 1964 translation, Dover, 1997. Google Scholar

[10]

A. Harper, A different proof of a finite version of Vinogradov's bilinear sum inequality, online notes, 2011.Google Scholar

[11]

M. Ratner, Horocycle flows, joinings and rigidity of products, Ann. of Math. (2), 118 (1983), 277-313. doi: 10.2307/2007030. Google Scholar

[12] D. Rudolph, Fundamentals of Measurable Dynamics. Ergodic Theory on Lebesgue Spaces, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1990. Google Scholar
[13]

Z. Wang, Möbius disjointness for analytic skew products, Invent. Math., 209 (2017), 175-196. doi: 10.1007/s00222-016-0707-z. Google Scholar

Figure 1.  The torus $\hat{X}$. A vertical segment of length $q_k$ intersects a horizontal slit of length $z$
Figure 2.  The torus $g_{\log(q_k)} \hat{X}$: A vertical segment $\gamma_1$ of length $1$ (drawn in red) intersects a horizontal slit $\gamma_2$ of length $q^k z$ (drawn in blue)
Figure 3.  Closing the curves. We complete the vertical segment $\gamma_1$ to a closed curve $\hat{\gamma_1}$ by adding a horizontal segment $\zeta_1$ (drawn in green). Simularly, we close up the horizontal slit $\gamma_2$ to obtain a closed curve $\hat{\gamma}_2$ by adding in a horizontal segment $\zeta_2$ and a vertical segment $\zeta_2'$ (drawn in purple)
[1]

Wen Huang, Zhiren Wang, Guohua Zhang. Möbius disjointness for topological models of ergodic systems with discrete spectrum. Journal of Modern Dynamics, 2019, 14: 277-290. doi: 10.3934/jmd.2019010

[2]

Jie Li, Kesong Yan, Xiangdong Ye. Recurrence properties and disjointness on the induced spaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1059-1073. doi: 10.3934/dcds.2015.35.1059

[3]

Philipp Kunde. Smooth diffeomorphisms with homogeneous spectrum and disjointness of convolutions. Journal of Modern Dynamics, 2016, 10: 439-481. doi: 10.3934/jmd.2016.10.439

[4]

Piotr Oprocha. Double minimality, entropy and disjointness with all minimal systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 263-275. doi: 10.3934/dcds.2019011

[5]

Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463

[6]

Konovenko Nadiia, Lychagin Valentin. Möbius invariants in image recognition. Journal of Geometric Mechanics, 2017, 9 (2) : 191-206. doi: 10.3934/jgm.2017008

[7]

Jacek Brzykcy, Krzysztof Frączek. Disjointness of interval exchange transformations from systems of probabilistic origin. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 53-73. doi: 10.3934/dcds.2010.27.53

[8]

Karim Boulabiar, Gerard Buskes and Gleb Sirotkin. A strongly diagonal power of algebraic order bounded disjointness preserving operators. Electronic Research Announcements, 2003, 9: 94-98.

[9]

Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903

[10]

Petr Kůrka. Iterative systems of real Möbius transformations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 567-574. doi: 10.3934/dcds.2009.25.567

[11]

Rich Stankewitz, Hiroki Sumi. Backward iteration algorithms for Julia sets of Möbius semigroups. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6475-6485. doi: 10.3934/dcds.2016079

[12]

Livio Flaminio, Giovanni Forni. Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows. Electronic Research Announcements, 2019, 26: 16-23. doi: 10.3934/era.2019.26.002

[13]

Przemysław Berk, Krzysztof Frączek. On special flows over IETs that are not isomorphic to their inverses. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 829-855. doi: 10.3934/dcds.2015.35.829

[14]

Tuan Phung-Duc, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. M/M/3/3 and M/M/4/4 retrial queues. Journal of Industrial & Management Optimization, 2009, 5 (3) : 431-451. doi: 10.3934/jimo.2009.5.431

[15]

Julio C. Rebelo, Ana L. Silva. On the Burnside problem in Diff(M). Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 423-439. doi: 10.3934/dcds.2007.17.423

[16]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[17]

Zsolt Saffer, Wuyi Yue. M/M/c multiple synchronous vacation model with gated discipline. Journal of Industrial & Management Optimization, 2012, 8 (4) : 939-968. doi: 10.3934/jimo.2012.8.939

[18]

Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1

[19]

Jun He, Guangjun Xu, Yanmin Liu. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-11. doi: 10.3934/jimo.2019092

[20]

Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026

2018 Impact Factor: 0.295

Metrics

  • PDF downloads (25)
  • HTML views (232)
  • Cited by (0)

Other articles
by authors

[Back to Top]