We show that Sarnak's conjecture on Möbius disjointness holds for interval exchange transformations on three intervals (3-IETs) that satisfy a mild diophantine condition.
Citation: |
Figure 3.
Closing the curves. We complete the vertical segment
[1] |
M. Boshernitzan and A. Nogueira, Generalized eigenfunctions of interval exchange maps, Ergodic Theory Dynam. Sys., 24 (2004), 697-705.
doi: 10.1017/S0143385704000021.![]() ![]() ![]() |
[2] |
J. Bourgain, On the correlation of the Moebius function with rank-one systems, J. Anal. Math., 120 (2013), 105-130.
doi: 10.1007/s11854-013-0016-z.![]() ![]() ![]() |
[3] |
J. Bourgain, P. Sarnak and T. Ziegler, Disjointness of Moebius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., 28, Springer, New York, 2013, 67â€"83.
doi: 10.1007/978-1-4614-4075-8_5.![]() ![]() ![]() |
[4] |
H. Davenport, On some infinite series involving arithmetical functions (Ⅱ), Quart. J. of Math., 8 (1937), 313-320.
doi: 10.1093/qmath/os-8.1.313.![]() ![]() |
[5] |
E. H. El Abdalaoui, M. Lemańczyk and T. de la Rue, On spectral disjointness of powers for rank-one transformations and Möbius orthogonality, J. Funct. Anal., 266 (2014), 284-317.
doi: 10.1016/j.jfa.2013.09.005.![]() ![]() ![]() |
[6] |
S. Ferenczi and C. Mauduit, On Sarnak's conjecture and Veech's question for interval exchanges, J. Anal. Math., 134 (2018), 545-573.
doi: 10.1007/s11854-018-0017-z.![]() ![]() ![]() |
[7] |
B. Green and T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2), 175 (2012), 541-566.
doi: 10.4007/annals.2012.175.2.3.![]() ![]() ![]() |
[8] |
I. Katai, A remark on a theorem of H. Daboussi, Acta Math. Hungar., 47 (1986), 223-225.
doi: 10.1007/BF01949145.![]() ![]() ![]() |
[9] |
A. Khinchin, Continued Fractions, with a preface by B. V. Gnedenko, translated from the third (1961) Russian edition, reprint of the 1964 translation, Dover, 1997.
![]() ![]() |
[10] |
A. Harper, A different proof of a finite version of Vinogradov's bilinear sum inequality, online notes, 2011.
![]() |
[11] |
M. Ratner, Horocycle flows, joinings and rigidity of products, Ann. of Math. (2), 118 (1983), 277-313.
doi: 10.2307/2007030.![]() ![]() ![]() |
[12] |
D. Rudolph, Fundamentals of Measurable Dynamics. Ergodic Theory on Lebesgue Spaces, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1990.
![]() ![]() |
[13] |
Z. Wang, Möbius disjointness for analytic skew products, Invent. Math., 209 (2017), 175-196.
doi: 10.1007/s00222-016-0707-z.![]() ![]() ![]() |