2019, 14: 121-151. doi: 10.3934/jmd.2019005

Dilation surfaces and their Veech groups

1. 

Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Boite Courrier 7012, 8 Place Aurélie Nemours, 75013 Paris, France

2. 

Max Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

3. 

Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

To the memory of William Veech

Received  August 29, 2018 Revised  February 12, 2019 Published  March 2019

We introduce a class of objects which we call 'dilation surfaces'. These provide families of foliations on surfaces whose dynamics we are interested in. We present and analyze a couple of examples, and we define concepts related to these in order to motivate several questions and open problems. In particular we generalize the notion of Veech group to dilation surfaces, and we prove a structure result about these Veech groups.

Citation: Eduard Duryev, Charles Fougeron, Selim Ghazouani. Dilation surfaces and their Veech groups. Journal of Modern Dynamics, 2019, 14: 121-151. doi: 10.3934/jmd.2019005
References:
[1]

A. Boulanger, C. Fougeron and S. Ghazouani, Cascades in the dynamics of affine interval exchanges, to appear in Ergodic Theory, 2018. Google Scholar

[2]

X. BressaudP. Hubert and A. Maass, Persistence of wandering intervals in self-similar affine interval exchange transformations, Ergodic Theory Dynam. Systems, 30 (2010), 665-686.  doi: 10.1017/S0143385709000418.  Google Scholar

[3]

J. Bowman and S. Sanderson, Angels' staircases, Sturmian sequences, and trajectories on homothety surfaces, arXiv: 1806.04129, (June, 2018). Google Scholar

[4]

R. Camelier and C. Gutierrez, Affine interval exchange transformations with wandering intervals, Ergodic Theory Dynam. Systems, 17 (1997), 1315-1338.  doi: 10.1017/S0143385797097666.  Google Scholar

[5]

E. Duryev and L. Monin, Twisted differentials, dilation surfaces and complex affine surfaces, in preparation, 2018. Google Scholar

[6]

W. M. Goldman, Geometric structures on manifolds and varieties of representations, in Geometry of Group Representations (Boulder, CO, 1987), Contemp. Math., 74, Amer. Math. Soc., Providence, RI, 1988, 169–198. doi: 10.1090/conm/074/957518.  Google Scholar

[7]

R. C. Gunning, Affine and projective structures on Riemann surfaces, in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981, 225–244.  Google Scholar

[8]

P. Hubert and T. A. Schmidt, Chapter 6 - An Introduction to Veech Surfaces, in Handbook of Dynamical Systems (ed. B. Hasselblatt and A. Katok), Vol. 1B, Elsevier B. V., Amsterdam, 2006, 501–526. doi: 10.1016/S1874-575X(06)80031-7.  Google Scholar

[9]

G. Levitt, Feuilletages des surfaces, Ann. Inst. Fourier (Grenoble), 32 (1982), 179-217.  doi: 10.5802/aif.875.  Google Scholar

[10]

I. Liousse, Dynamique générique des feuilletages transversalement affines des surfaces, Bull. Soc. Math. France, 123 (1995), 493-516.  doi: 10.24033/bsmf.2268.  Google Scholar

[11]

R. Mandelbaum, Branched structures on Riemann surfaces, Trans. Amer. Math. Soc., 163 (1972), 261-275.  doi: 10.1090/S0002-9947-1972-0288253-1.  Google Scholar

[12]

R. Mandelbaum, Branched structures and affine and projective bundles on Riemann surfaces, Trans. Amer. Math. Soc., 183 (1973), 37-58.  doi: 10.1090/S0002-9947-1973-0325958-9.  Google Scholar

[13]

S. MarmiP. Moussa and J.-C. Yoccoz, Affine interval exchange maps with a wandering interval, Proc. Lond. Math. Soc. (3), 100 (2010), 639-669.  doi: 10.1112/plms/pdp037.  Google Scholar

[14]

F. E. Prym, Zur Integration der gleichzeitigen Differentialgleichungen, J. Reine Angew. Math., 70 (1869), 354-362.  doi: 10.1515/crll.1869.70.354.  Google Scholar

[15] W. P. Thurston, Three-dimensional geometry and topology. Vol. 1, Edited by S. Levy, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997.   Google Scholar
[16]

W. A. Veech, Flat surfaces, Amer. J. Math., 115 (1993), 589-689.  doi: 10.2307/2375075.  Google Scholar

[17]

W. A. Veech, Delaunay partitions, Topology, 36 (1997), 1-28.  doi: 10.1016/0040-9383(96)00002-X.  Google Scholar

[18]

W. A. Veech, Informal notes on flat surfaces, Unpublished course notes, 2008. Google Scholar

[19]

Ya. B. Vorobets, Plane structures and billiards in rational polygons: The Veech alternative, Uspekhi Mat. Nauk, 51 (1996), 3-42.  doi: 10.1070/RM1996v051n05ABEH002993.  Google Scholar

[20]

A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006, 437–583. doi: 10.1007/978-3-540-31347-2_13.  Google Scholar

show all references

References:
[1]

A. Boulanger, C. Fougeron and S. Ghazouani, Cascades in the dynamics of affine interval exchanges, to appear in Ergodic Theory, 2018. Google Scholar

[2]

X. BressaudP. Hubert and A. Maass, Persistence of wandering intervals in self-similar affine interval exchange transformations, Ergodic Theory Dynam. Systems, 30 (2010), 665-686.  doi: 10.1017/S0143385709000418.  Google Scholar

[3]

J. Bowman and S. Sanderson, Angels' staircases, Sturmian sequences, and trajectories on homothety surfaces, arXiv: 1806.04129, (June, 2018). Google Scholar

[4]

R. Camelier and C. Gutierrez, Affine interval exchange transformations with wandering intervals, Ergodic Theory Dynam. Systems, 17 (1997), 1315-1338.  doi: 10.1017/S0143385797097666.  Google Scholar

[5]

E. Duryev and L. Monin, Twisted differentials, dilation surfaces and complex affine surfaces, in preparation, 2018. Google Scholar

[6]

W. M. Goldman, Geometric structures on manifolds and varieties of representations, in Geometry of Group Representations (Boulder, CO, 1987), Contemp. Math., 74, Amer. Math. Soc., Providence, RI, 1988, 169–198. doi: 10.1090/conm/074/957518.  Google Scholar

[7]

R. C. Gunning, Affine and projective structures on Riemann surfaces, in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981, 225–244.  Google Scholar

[8]

P. Hubert and T. A. Schmidt, Chapter 6 - An Introduction to Veech Surfaces, in Handbook of Dynamical Systems (ed. B. Hasselblatt and A. Katok), Vol. 1B, Elsevier B. V., Amsterdam, 2006, 501–526. doi: 10.1016/S1874-575X(06)80031-7.  Google Scholar

[9]

G. Levitt, Feuilletages des surfaces, Ann. Inst. Fourier (Grenoble), 32 (1982), 179-217.  doi: 10.5802/aif.875.  Google Scholar

[10]

I. Liousse, Dynamique générique des feuilletages transversalement affines des surfaces, Bull. Soc. Math. France, 123 (1995), 493-516.  doi: 10.24033/bsmf.2268.  Google Scholar

[11]

R. Mandelbaum, Branched structures on Riemann surfaces, Trans. Amer. Math. Soc., 163 (1972), 261-275.  doi: 10.1090/S0002-9947-1972-0288253-1.  Google Scholar

[12]

R. Mandelbaum, Branched structures and affine and projective bundles on Riemann surfaces, Trans. Amer. Math. Soc., 183 (1973), 37-58.  doi: 10.1090/S0002-9947-1973-0325958-9.  Google Scholar

[13]

S. MarmiP. Moussa and J.-C. Yoccoz, Affine interval exchange maps with a wandering interval, Proc. Lond. Math. Soc. (3), 100 (2010), 639-669.  doi: 10.1112/plms/pdp037.  Google Scholar

[14]

F. E. Prym, Zur Integration der gleichzeitigen Differentialgleichungen, J. Reine Angew. Math., 70 (1869), 354-362.  doi: 10.1515/crll.1869.70.354.  Google Scholar

[15] W. P. Thurston, Three-dimensional geometry and topology. Vol. 1, Edited by S. Levy, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997.   Google Scholar
[16]

W. A. Veech, Flat surfaces, Amer. J. Math., 115 (1993), 589-689.  doi: 10.2307/2375075.  Google Scholar

[17]

W. A. Veech, Delaunay partitions, Topology, 36 (1997), 1-28.  doi: 10.1016/0040-9383(96)00002-X.  Google Scholar

[18]

W. A. Veech, Informal notes on flat surfaces, Unpublished course notes, 2008. Google Scholar

[19]

Ya. B. Vorobets, Plane structures and billiards in rational polygons: The Veech alternative, Uspekhi Mat. Nauk, 51 (1996), 3-42.  doi: 10.1070/RM1996v051n05ABEH002993.  Google Scholar

[20]

A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006, 437–583. doi: 10.1007/978-3-540-31347-2_13.  Google Scholar

Figure 1.  A translation surface of genus $ 2 $
Figure 2.  A 'dilation surface' of genus $ 2 $ and a leaf of its horizontal foliation
Figure 3.  A 'hyperbolic' closed leaf
Figure 5.  The Franco-Russian slit construction
Figure 4.  A Hopf torus and the basis of its homology
Figure 6.  The double-chamber surface
Figure 7.  Dilation cylinders of the double-chamber surface
Figure 8.  The disco surface $ \operatorname{D}_{a, b} $
Figure 9.  An alternative representation of the disco surface
Figure 10.  Cut-and-paste operation applied to the image of the double-chamber surface under the matrix $ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} $
Figure 11.  A ribbon graph with two vertices
Figure 12.  A cylinder decomposition of the surface of genus $ 2 $
Figure 13.  A dilation torus, which is not a Hopf torus
Figure 14.  A dilation surface with a non-discrete set of holonomy vectors of saddle connections starting at the black point
Figure 15.  An angular section in which all leaves are hyperbolic
Figure 16.  Topological setting of the triangulation
[1]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[2]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[3]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[4]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[5]

Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[8]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[9]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[10]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[11]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[12]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[13]

Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128

[14]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[15]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[16]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[17]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[18]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[19]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[20]

Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (98)
  • HTML views (557)
  • Cited by (0)

[Back to Top]