We introduce a class of objects which we call 'dilation surfaces'. These provide families of foliations on surfaces whose dynamics we are interested in. We present and analyze a couple of examples, and we define concepts related to these in order to motivate several questions and open problems. In particular we generalize the notion of Veech group to dilation surfaces, and we prove a structure result about these Veech groups.
Citation: |
[1] | A. Boulanger, C. Fougeron and S. Ghazouani, Cascades in the dynamics of affine interval exchanges, to appear in Ergodic Theory, 2018. |
[2] | X. Bressaud, P. Hubert and A. Maass, Persistence of wandering intervals in self-similar affine interval exchange transformations, Ergodic Theory Dynam. Systems, 30 (2010), 665-686. doi: 10.1017/S0143385709000418. |
[3] | J. Bowman and S. Sanderson, Angels' staircases, Sturmian sequences, and trajectories on homothety surfaces, arXiv: 1806.04129, (June, 2018). |
[4] | R. Camelier and C. Gutierrez, Affine interval exchange transformations with wandering intervals, Ergodic Theory Dynam. Systems, 17 (1997), 1315-1338. doi: 10.1017/S0143385797097666. |
[5] | E. Duryev and L. Monin, Twisted differentials, dilation surfaces and complex affine surfaces, in preparation, 2018. |
[6] | W. M. Goldman, Geometric structures on manifolds and varieties of representations, in Geometry of Group Representations (Boulder, CO, 1987), Contemp. Math., 74, Amer. Math. Soc., Providence, RI, 1988, 169–198. doi: 10.1090/conm/074/957518. |
[7] | R. C. Gunning, Affine and projective structures on Riemann surfaces, in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981, 225–244. |
[8] | P. Hubert and T. A. Schmidt, Chapter 6 - An Introduction to Veech Surfaces, in Handbook of Dynamical Systems (ed. B. Hasselblatt and A. Katok), Vol. 1B, Elsevier B. V., Amsterdam, 2006, 501–526. doi: 10.1016/S1874-575X(06)80031-7. |
[9] | G. Levitt, Feuilletages des surfaces, Ann. Inst. Fourier (Grenoble), 32 (1982), 179-217. doi: 10.5802/aif.875. |
[10] | I. Liousse, Dynamique générique des feuilletages transversalement affines des surfaces, Bull. Soc. Math. France, 123 (1995), 493-516. doi: 10.24033/bsmf.2268. |
[11] | R. Mandelbaum, Branched structures on Riemann surfaces, Trans. Amer. Math. Soc., 163 (1972), 261-275. doi: 10.1090/S0002-9947-1972-0288253-1. |
[12] | R. Mandelbaum, Branched structures and affine and projective bundles on Riemann surfaces, Trans. Amer. Math. Soc., 183 (1973), 37-58. doi: 10.1090/S0002-9947-1973-0325958-9. |
[13] | S. Marmi, P. Moussa and J.-C. Yoccoz, Affine interval exchange maps with a wandering interval, Proc. Lond. Math. Soc. (3), 100 (2010), 639-669. doi: 10.1112/plms/pdp037. |
[14] | F. E. Prym, Zur Integration der gleichzeitigen Differentialgleichungen, J. Reine Angew. Math., 70 (1869), 354-362. doi: 10.1515/crll.1869.70.354. |
[15] | W. P. Thurston, Three-dimensional geometry and topology. Vol. 1, Edited by S. Levy, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997. |
[16] | W. A. Veech, Flat surfaces, Amer. J. Math., 115 (1993), 589-689. doi: 10.2307/2375075. |
[17] | W. A. Veech, Delaunay partitions, Topology, 36 (1997), 1-28. doi: 10.1016/0040-9383(96)00002-X. |
[18] | W. A. Veech, Informal notes on flat surfaces, Unpublished course notes, 2008. |
[19] | Ya. B. Vorobets, Plane structures and billiards in rational polygons: The Veech alternative, Uspekhi Mat. Nauk, 51 (1996), 3-42. doi: 10.1070/RM1996v051n05ABEH002993. |
[20] | A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006, 437–583. doi: 10.1007/978-3-540-31347-2_13. |