2019, 14: 277-290. doi: 10.3934/jmd.2019010

Möbius disjointness for topological models of ergodic systems with discrete spectrum

1. 

School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

2. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

3. 

School of Mathematical Sciences and Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China

Received  December 14, 2017 Revised  June 08, 2018 Published  March 2019

Fund Project: WH: Supported by NSFC (11431012 and 11731003).
ZW: Supported by NSF (DMS-1451247 and DMS-1501095).
GZ: Supported by NSFC (11671094, 11722103 and 11731003).

We provide a criterion for a point satisfying the required disjointness condition in Sarnak's Möbius Disjointness Conjecture. As a direct application, we have that the conjecture holds for any topological model of an ergodic system with discrete spectrum.

Citation: Wen Huang, Zhiren Wang, Guohua Zhang. Möbius disjointness for topological models of ergodic systems with discrete spectrum. Journal of Modern Dynamics, 2019, 14: 277-290. doi: 10.3934/jmd.2019010
References:
[1]

J. Auslander, Mean-$L$-stable systems, Illinois J. Math., 3 (1959), 566–579. Google Scholar

[2]

H. Davenport, On some infinite series involving arithmetical functions Ⅱ, Quat. J. Math., 8 (1937), 313–320.Google Scholar

[3]

T. Downarowicz and E. Glasner, Isomorphic extensions and applications, Topological Methods in Nonlinear Analysis, 48 (2016), 321–338. doi: 10.12775/TMNA.2016.050. Google Scholar

[4]

T. Downarowicz and S. Kasjan, Odometers and Toeplitz systems revisited in the context of Sarnak's conjecture, Studia Math., 229 (2015), 45–72. Google Scholar

[5]

E. H. El Abdalaoui, S. Kasjan and M. Lemańczyk, 0-1 sequences of the Thue-Morse type and Sarnak's conjecture, Proc. Amer. Math. Soc., 144 (2016), 161–176. doi: 10.1090/proc/12683. Google Scholar

[6]

E. H. El AbdalaouiJ. Kułaga-PrzymusM. Lemańczyk and T. de la Rue, Möbius disjointness for models of an ergodic system and beyond, Israel J. Math., 228 (2018), 707-751. doi: 10.1007/s11856-018-1784-z. Google Scholar

[7]

E. H. El Abdalaoui, M. Lemańczyk and T. de la Rue, Automorphisms with quasi-discrete spectrum, multiplicative functions and average orthogonality along short intervals, International Mathematics Research Notices, 14 (2017), 4350–4368. doi: 10.1093/imrn/rnw146. Google Scholar

[8]

A. Fan and Y. Jiang, Oscillating sequences, minimal mean attractability and minimal mean-Lyapunov-stability, Ergodic Theory and Dynamical Systems, 2017, to appear.Google Scholar

[9]

S. Ferenczi, J. Kułaga-Przymus, M. Lemańczyk and C. Mauduit, Substitutions and Möbius disjointness, in Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby, Contemp. Math., 678, Amer. Math. Soc., Providence, RI, 2016, 151–173. Google Scholar

[10]

L. FlaminioK. FrączekJ. Kułaga-Przymus and M. Lemańczyk, Approximate orthogonality of powers for ergodic affine unipotent diffeomorphisms on nilmanifolds, Studia Math., 244 (2019), 43-97. doi: 10.4064/sm170512-25-9. Google Scholar

[11]

S. Fomin, On dynamical systems with a purely point spectrum}, Russian, Doklady Akad. Nauk SSSR (N.S.), 77 (1951), 29–32. Google Scholar

[12]

B. Green and T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2), 175 (2012), 541–566. doi: 10.4007/annals.2012.175.2.3. Google Scholar

[13]

P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. Ⅱ, Ann. of Math. (2), 43 (1942), 332–350. doi: 10.2307/1968872. Google Scholar

[14]

W. Huang, Z. Lian, S. Shao and X. Ye, Sequences from zero entropy noncommutative toral automorphisms and Sarnak Conjecture, J. Differential Equations, 263 (2017), 779–810. doi: 10.1016/j.jde.2017.02.046. Google Scholar

[15]

H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004. doi: 10.1090/coll/053. Google Scholar

[16]

E. Lehrer, Topological mixing and uniquely ergodic systems, Israel J. Math., 57 (1987), 239–255. doi: 10.1007/BF02772176. Google Scholar

[17]

J. Li, S. Tu and X. Ye, Mean equicontinuity and mean sensitivity, Ergodic Theory Dynam. Systems, 35 (2015), 2587–2612. doi: 10.1017/etds.2014.41. Google Scholar

[18]

K. Matomäki, M. Radziwiłl and T. Tao, An averaged form of Chowla's conjecture, Algebra Number Theory, 9 (2015), 2167–2196. doi: 10.2140/ant.2015.9.2167. Google Scholar

[19]

S. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Mathematical Society Lecture Note Series, No. 29, Cambridge University Press, Cambridge-New York-Melbourne, 1977. Google Scholar

[20]

J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc., 58 (1952), 116–136. doi: 10.1090/S0002-9904-1952-09580-X. Google Scholar

[21]

P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, IAS, 2009.Google Scholar

[22]

P. Sarnak, Möbius randomness and dynamics, Not. S. Afr. Math. Soc., 43 (2012), 89–97. Google Scholar

[23]

W. A. Veech, Möbius orthogonality for generalized Morse-Kakutani flows, Amer. J. Math., 139 (2017), 1157-1203. doi: 10.1353/ajm.2017.0031. Google Scholar

[24]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. Google Scholar

[25]

F. Wei, Entropy of Arithmetic Functions and Sarnak's Möbius Disjointness Conjecture, Thesis (Ph.D.)–The University of Chinese Academy of Sciences, 2016.Google Scholar

show all references

References:
[1]

J. Auslander, Mean-$L$-stable systems, Illinois J. Math., 3 (1959), 566–579. Google Scholar

[2]

H. Davenport, On some infinite series involving arithmetical functions Ⅱ, Quat. J. Math., 8 (1937), 313–320.Google Scholar

[3]

T. Downarowicz and E. Glasner, Isomorphic extensions and applications, Topological Methods in Nonlinear Analysis, 48 (2016), 321–338. doi: 10.12775/TMNA.2016.050. Google Scholar

[4]

T. Downarowicz and S. Kasjan, Odometers and Toeplitz systems revisited in the context of Sarnak's conjecture, Studia Math., 229 (2015), 45–72. Google Scholar

[5]

E. H. El Abdalaoui, S. Kasjan and M. Lemańczyk, 0-1 sequences of the Thue-Morse type and Sarnak's conjecture, Proc. Amer. Math. Soc., 144 (2016), 161–176. doi: 10.1090/proc/12683. Google Scholar

[6]

E. H. El AbdalaouiJ. Kułaga-PrzymusM. Lemańczyk and T. de la Rue, Möbius disjointness for models of an ergodic system and beyond, Israel J. Math., 228 (2018), 707-751. doi: 10.1007/s11856-018-1784-z. Google Scholar

[7]

E. H. El Abdalaoui, M. Lemańczyk and T. de la Rue, Automorphisms with quasi-discrete spectrum, multiplicative functions and average orthogonality along short intervals, International Mathematics Research Notices, 14 (2017), 4350–4368. doi: 10.1093/imrn/rnw146. Google Scholar

[8]

A. Fan and Y. Jiang, Oscillating sequences, minimal mean attractability and minimal mean-Lyapunov-stability, Ergodic Theory and Dynamical Systems, 2017, to appear.Google Scholar

[9]

S. Ferenczi, J. Kułaga-Przymus, M. Lemańczyk and C. Mauduit, Substitutions and Möbius disjointness, in Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby, Contemp. Math., 678, Amer. Math. Soc., Providence, RI, 2016, 151–173. Google Scholar

[10]

L. FlaminioK. FrączekJ. Kułaga-Przymus and M. Lemańczyk, Approximate orthogonality of powers for ergodic affine unipotent diffeomorphisms on nilmanifolds, Studia Math., 244 (2019), 43-97. doi: 10.4064/sm170512-25-9. Google Scholar

[11]

S. Fomin, On dynamical systems with a purely point spectrum}, Russian, Doklady Akad. Nauk SSSR (N.S.), 77 (1951), 29–32. Google Scholar

[12]

B. Green and T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2), 175 (2012), 541–566. doi: 10.4007/annals.2012.175.2.3. Google Scholar

[13]

P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. Ⅱ, Ann. of Math. (2), 43 (1942), 332–350. doi: 10.2307/1968872. Google Scholar

[14]

W. Huang, Z. Lian, S. Shao and X. Ye, Sequences from zero entropy noncommutative toral automorphisms and Sarnak Conjecture, J. Differential Equations, 263 (2017), 779–810. doi: 10.1016/j.jde.2017.02.046. Google Scholar

[15]

H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004. doi: 10.1090/coll/053. Google Scholar

[16]

E. Lehrer, Topological mixing and uniquely ergodic systems, Israel J. Math., 57 (1987), 239–255. doi: 10.1007/BF02772176. Google Scholar

[17]

J. Li, S. Tu and X. Ye, Mean equicontinuity and mean sensitivity, Ergodic Theory Dynam. Systems, 35 (2015), 2587–2612. doi: 10.1017/etds.2014.41. Google Scholar

[18]

K. Matomäki, M. Radziwiłl and T. Tao, An averaged form of Chowla's conjecture, Algebra Number Theory, 9 (2015), 2167–2196. doi: 10.2140/ant.2015.9.2167. Google Scholar

[19]

S. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Mathematical Society Lecture Note Series, No. 29, Cambridge University Press, Cambridge-New York-Melbourne, 1977. Google Scholar

[20]

J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc., 58 (1952), 116–136. doi: 10.1090/S0002-9904-1952-09580-X. Google Scholar

[21]

P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, IAS, 2009.Google Scholar

[22]

P. Sarnak, Möbius randomness and dynamics, Not. S. Afr. Math. Soc., 43 (2012), 89–97. Google Scholar

[23]

W. A. Veech, Möbius orthogonality for generalized Morse-Kakutani flows, Amer. J. Math., 139 (2017), 1157-1203. doi: 10.1353/ajm.2017.0031. Google Scholar

[24]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. Google Scholar

[25]

F. Wei, Entropy of Arithmetic Functions and Sarnak's Möbius Disjointness Conjecture, Thesis (Ph.D.)–The University of Chinese Academy of Sciences, 2016.Google Scholar

[1]

Chris Good, Sergio Macías. What is topological about topological dynamics?. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1007-1031. doi: 10.3934/dcds.2018043

[2]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[3]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[4]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[5]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[6]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[7]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[8]

Alfonso Artigue. Discrete and continuous topological dynamics: Fields of cross sections and expansive flows. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5911-5927. doi: 10.3934/dcds.2016059

[9]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

[10]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[11]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[12]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[13]

César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577

[14]

Yujun Ju, Dongkui Ma, Yupan Wang. Topological entropy of free semigroup actions for noncompact sets. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 995-1017. doi: 10.3934/dcds.2019041

[15]

Yun Zhao, Wen-Chiao Cheng, Chih-Chang Ho. Q-entropy for general topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2059-2075. doi: 10.3934/dcds.2019086

[16]

Tao Wang, Yu Huang. Weighted topological and measure-theoretic entropy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3941-3967. doi: 10.3934/dcds.2019159

[17]

Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288

[18]

Magdalena Czubak, Robert L. Jerrard. Topological defects in the abelian Higgs model. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1933-1968. doi: 10.3934/dcds.2015.35.1933

[19]

Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779

[20]

Álvaro Castañeda, Gonzalo Robledo. Dichotomy spectrum and almost topological conjugacy on nonautonomus unbounded difference systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2287-2304. doi: 10.3934/dcds.2018094

2018 Impact Factor: 0.295

Metrics

  • PDF downloads (36)
  • HTML views (243)
  • Cited by (0)

Other articles
by authors

[Back to Top]