2019, 14: 277-290. doi: 10.3934/jmd.2019010

Möbius disjointness for topological models of ergodic systems with discrete spectrum

1. 

School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

2. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

3. 

School of Mathematical Sciences and Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China

Received  December 14, 2017 Revised  June 08, 2018 Published  March 2019

Fund Project: WH: Supported by NSFC (11431012 and 11731003).
ZW: Supported by NSF (DMS-1451247 and DMS-1501095).
GZ: Supported by NSFC (11671094, 11722103 and 11731003).

We provide a criterion for a point satisfying the required disjointness condition in Sarnak's Möbius Disjointness Conjecture. As a direct application, we have that the conjecture holds for any topological model of an ergodic system with discrete spectrum.

Citation: Wen Huang, Zhiren Wang, Guohua Zhang. Möbius disjointness for topological models of ergodic systems with discrete spectrum. Journal of Modern Dynamics, 2019, 14: 277-290. doi: 10.3934/jmd.2019010
References:
[1]

J. Auslander, Mean-$L$-stable systems, Illinois J. Math., 3 (1959), 566–579.  Google Scholar

[2]

H. Davenport, On some infinite series involving arithmetical functions Ⅱ, Quat. J. Math., 8 (1937), 313–320. Google Scholar

[3]

T. Downarowicz and E. Glasner, Isomorphic extensions and applications, Topological Methods in Nonlinear Analysis, 48 (2016), 321–338. doi: 10.12775/TMNA.2016.050.  Google Scholar

[4]

T. Downarowicz and S. Kasjan, Odometers and Toeplitz systems revisited in the context of Sarnak's conjecture, Studia Math., 229 (2015), 45–72.  Google Scholar

[5]

E. H. El Abdalaoui, S. Kasjan and M. Lemańczyk, 0-1 sequences of the Thue-Morse type and Sarnak's conjecture, Proc. Amer. Math. Soc., 144 (2016), 161–176. doi: 10.1090/proc/12683.  Google Scholar

[6]

E. H. El AbdalaouiJ. Kułaga-PrzymusM. Lemańczyk and T. de la Rue, Möbius disjointness for models of an ergodic system and beyond, Israel J. Math., 228 (2018), 707-751.  doi: 10.1007/s11856-018-1784-z.  Google Scholar

[7]

E. H. El Abdalaoui, M. Lemańczyk and T. de la Rue, Automorphisms with quasi-discrete spectrum, multiplicative functions and average orthogonality along short intervals, International Mathematics Research Notices, 14 (2017), 4350–4368. doi: 10.1093/imrn/rnw146.  Google Scholar

[8]

A. Fan and Y. Jiang, Oscillating sequences, minimal mean attractability and minimal mean-Lyapunov-stability, Ergodic Theory and Dynamical Systems, 2017, to appear. Google Scholar

[9]

S. Ferenczi, J. Kułaga-Przymus, M. Lemańczyk and C. Mauduit, Substitutions and Möbius disjointness, in Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby, Contemp. Math., 678, Amer. Math. Soc., Providence, RI, 2016, 151–173.  Google Scholar

[10]

L. FlaminioK. FrączekJ. Kułaga-Przymus and M. Lemańczyk, Approximate orthogonality of powers for ergodic affine unipotent diffeomorphisms on nilmanifolds, Studia Math., 244 (2019), 43-97.  doi: 10.4064/sm170512-25-9.  Google Scholar

[11]

S. Fomin, On dynamical systems with a purely point spectrum}, Russian, Doklady Akad. Nauk SSSR (N.S.), 77 (1951), 29–32.  Google Scholar

[12]

B. Green and T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2), 175 (2012), 541–566. doi: 10.4007/annals.2012.175.2.3.  Google Scholar

[13]

P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. Ⅱ, Ann. of Math. (2), 43 (1942), 332–350. doi: 10.2307/1968872.  Google Scholar

[14]

W. Huang, Z. Lian, S. Shao and X. Ye, Sequences from zero entropy noncommutative toral automorphisms and Sarnak Conjecture, J. Differential Equations, 263 (2017), 779–810. doi: 10.1016/j.jde.2017.02.046.  Google Scholar

[15]

H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004. doi: 10.1090/coll/053.  Google Scholar

[16]

E. Lehrer, Topological mixing and uniquely ergodic systems, Israel J. Math., 57 (1987), 239–255. doi: 10.1007/BF02772176.  Google Scholar

[17]

J. Li, S. Tu and X. Ye, Mean equicontinuity and mean sensitivity, Ergodic Theory Dynam. Systems, 35 (2015), 2587–2612. doi: 10.1017/etds.2014.41.  Google Scholar

[18]

K. Matomäki, M. Radziwiłl and T. Tao, An averaged form of Chowla's conjecture, Algebra Number Theory, 9 (2015), 2167–2196. doi: 10.2140/ant.2015.9.2167.  Google Scholar

[19]

S. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Mathematical Society Lecture Note Series, No. 29, Cambridge University Press, Cambridge-New York-Melbourne, 1977.  Google Scholar

[20]

J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc., 58 (1952), 116–136. doi: 10.1090/S0002-9904-1952-09580-X.  Google Scholar

[21]

P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, IAS, 2009. Google Scholar

[22]

P. Sarnak, Möbius randomness and dynamics, Not. S. Afr. Math. Soc., 43 (2012), 89–97.  Google Scholar

[23]

W. A. Veech, Möbius orthogonality for generalized Morse-Kakutani flows, Amer. J. Math., 139 (2017), 1157-1203.  doi: 10.1353/ajm.2017.0031.  Google Scholar

[24]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[25]

F. Wei, Entropy of Arithmetic Functions and Sarnak's Möbius Disjointness Conjecture, Thesis (Ph.D.)–The University of Chinese Academy of Sciences, 2016. Google Scholar

show all references

References:
[1]

J. Auslander, Mean-$L$-stable systems, Illinois J. Math., 3 (1959), 566–579.  Google Scholar

[2]

H. Davenport, On some infinite series involving arithmetical functions Ⅱ, Quat. J. Math., 8 (1937), 313–320. Google Scholar

[3]

T. Downarowicz and E. Glasner, Isomorphic extensions and applications, Topological Methods in Nonlinear Analysis, 48 (2016), 321–338. doi: 10.12775/TMNA.2016.050.  Google Scholar

[4]

T. Downarowicz and S. Kasjan, Odometers and Toeplitz systems revisited in the context of Sarnak's conjecture, Studia Math., 229 (2015), 45–72.  Google Scholar

[5]

E. H. El Abdalaoui, S. Kasjan and M. Lemańczyk, 0-1 sequences of the Thue-Morse type and Sarnak's conjecture, Proc. Amer. Math. Soc., 144 (2016), 161–176. doi: 10.1090/proc/12683.  Google Scholar

[6]

E. H. El AbdalaouiJ. Kułaga-PrzymusM. Lemańczyk and T. de la Rue, Möbius disjointness for models of an ergodic system and beyond, Israel J. Math., 228 (2018), 707-751.  doi: 10.1007/s11856-018-1784-z.  Google Scholar

[7]

E. H. El Abdalaoui, M. Lemańczyk and T. de la Rue, Automorphisms with quasi-discrete spectrum, multiplicative functions and average orthogonality along short intervals, International Mathematics Research Notices, 14 (2017), 4350–4368. doi: 10.1093/imrn/rnw146.  Google Scholar

[8]

A. Fan and Y. Jiang, Oscillating sequences, minimal mean attractability and minimal mean-Lyapunov-stability, Ergodic Theory and Dynamical Systems, 2017, to appear. Google Scholar

[9]

S. Ferenczi, J. Kułaga-Przymus, M. Lemańczyk and C. Mauduit, Substitutions and Möbius disjointness, in Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby, Contemp. Math., 678, Amer. Math. Soc., Providence, RI, 2016, 151–173.  Google Scholar

[10]

L. FlaminioK. FrączekJ. Kułaga-Przymus and M. Lemańczyk, Approximate orthogonality of powers for ergodic affine unipotent diffeomorphisms on nilmanifolds, Studia Math., 244 (2019), 43-97.  doi: 10.4064/sm170512-25-9.  Google Scholar

[11]

S. Fomin, On dynamical systems with a purely point spectrum}, Russian, Doklady Akad. Nauk SSSR (N.S.), 77 (1951), 29–32.  Google Scholar

[12]

B. Green and T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2), 175 (2012), 541–566. doi: 10.4007/annals.2012.175.2.3.  Google Scholar

[13]

P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. Ⅱ, Ann. of Math. (2), 43 (1942), 332–350. doi: 10.2307/1968872.  Google Scholar

[14]

W. Huang, Z. Lian, S. Shao and X. Ye, Sequences from zero entropy noncommutative toral automorphisms and Sarnak Conjecture, J. Differential Equations, 263 (2017), 779–810. doi: 10.1016/j.jde.2017.02.046.  Google Scholar

[15]

H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004. doi: 10.1090/coll/053.  Google Scholar

[16]

E. Lehrer, Topological mixing and uniquely ergodic systems, Israel J. Math., 57 (1987), 239–255. doi: 10.1007/BF02772176.  Google Scholar

[17]

J. Li, S. Tu and X. Ye, Mean equicontinuity and mean sensitivity, Ergodic Theory Dynam. Systems, 35 (2015), 2587–2612. doi: 10.1017/etds.2014.41.  Google Scholar

[18]

K. Matomäki, M. Radziwiłl and T. Tao, An averaged form of Chowla's conjecture, Algebra Number Theory, 9 (2015), 2167–2196. doi: 10.2140/ant.2015.9.2167.  Google Scholar

[19]

S. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Mathematical Society Lecture Note Series, No. 29, Cambridge University Press, Cambridge-New York-Melbourne, 1977.  Google Scholar

[20]

J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc., 58 (1952), 116–136. doi: 10.1090/S0002-9904-1952-09580-X.  Google Scholar

[21]

P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, IAS, 2009. Google Scholar

[22]

P. Sarnak, Möbius randomness and dynamics, Not. S. Afr. Math. Soc., 43 (2012), 89–97.  Google Scholar

[23]

W. A. Veech, Möbius orthogonality for generalized Morse-Kakutani flows, Amer. J. Math., 139 (2017), 1157-1203.  doi: 10.1353/ajm.2017.0031.  Google Scholar

[24]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[25]

F. Wei, Entropy of Arithmetic Functions and Sarnak's Möbius Disjointness Conjecture, Thesis (Ph.D.)–The University of Chinese Academy of Sciences, 2016. Google Scholar

[1]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[2]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[6]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[9]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[10]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[11]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[14]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[15]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[16]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[17]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[18]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[19]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[20]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (105)
  • HTML views (422)
  • Cited by (3)

Other articles
by authors

[Back to Top]