Fix an integral Soddy sphere packing $ \mathscr{P} $. Let $ \mathscr{B} $ be the set of all bends in $ \mathscr{P} $. A number $ n $ is called represented if $ n\in \mathscr{B} $, that is, if there is a sphere in $ \mathscr{P} $ with bend equal to $ n $. A number $ n $ is called admissible if it is everywhere locally represented, meaning that $ n\in \mathscr{B}( \operatorname{mod} q) $ for all $ q $. It is shown that every sufficiently large admissible number is represented.
Citation: |
Figure 3. A reproduction from [28]
[1] |
A. Baragar, Higher dimensional Apollonian packings, revisited, Geom. Dedicata, 195 (2018), 137-161.
doi: 10.1007/s10711-017-0280-7.![]() ![]() ![]() |
[2] |
M. Borkovec, W. de Paris and R. Peikert, The fractal dimension of the Apollonian sphere packing, Fractals, 2 (1994), 521-526.
doi: 10.1142/S0218348X94000739.![]() ![]() ![]() |
[3] |
J. Bourgain and E. Fuchs, A proof of the positive density conjecture for integer Apollonian circle packings, J. Amer. Math. Soc., 24 (2011), 945-967.
doi: 10.1090/S0894-0347-2011-00707-8.![]() ![]() ![]() |
[4] |
J. Bourgain and A. Kontorovich, On the local-global conjecture for integral Apollonian gaskets, Invent. Math., 196 (2014), 589-650.
doi: 10.1007/s00222-013-0475-y.![]() ![]() ![]() |
[5] |
D. W. Boyd, An algorithm for generating the sphere coordinates in a three-dimensional osculatory packing, Math. Comp., 27 (1973), 369-377.
doi: 10.1090/S0025-5718-1973-0338937-6.![]() ![]() ![]() |
[6] |
D. W. Boyd, The osculatory packing of a three dimensional sphere, Can. J. Math., 25 (1973), 303-322.
doi: 10.4153/CJM-1973-030-5.![]() ![]() ![]() |
[7] |
J. W. S. Cassels, Rational Quadratic Forms, London Mathematical Society Monographs, 13, Academic Press, London-New York, 1978.
![]() ![]() |
[8] |
R. Descartes, Œuvres, volume 4, (eds. C. Adams and P. Tannery), Paris, 1901.
![]() |
[9] |
D. Dias, The local-global principle for integral generalized Apollonian sphere packings, preprint, arXiv: 1401.4789, (2014).
![]() |
[10] |
E. Fuchs and K. Sanden, Some experiments with integral Apollonian circle packings, Exp. Math., 20 (2011), 380-399.
doi: 10.1080/10586458.2011.565255.![]() ![]() ![]() |
[11] |
R. L. Graham, J. C. Lagarias, C. L. Mallows, A. R. Wilks and C. H. Yan, Apollonian circle packings: Number theory, J. Number Theory, 100 (2003), 1-45.
doi: 10.1016/S0022-314X(03)00015-5.![]() ![]() ![]() |
[12] |
R. L. Graham, J. C. Lagarias, C. L. Mallows, A. R. Wilks and C. H. Yan, Apollonian circle packings: Geometry and group theory. Ⅲ. Higher dimensions, Discrete Comput. Geom., 35 (2006), 37-72.
doi: 10.1007/s00454-005-1197-8.![]() ![]() ![]() |
[13] |
T. Gossett, The kiss precise, Nature, 139 (1937), 62.
doi: 10.1038/139062a0.![]() ![]() |
[14] |
F. Grunewald and J. Schwermer, Subgroups of Bianchi groups and arithmetic quotients of hyperbolic 3-space, Trans. Amer. Math. Soc., 335 (1993), 47-78.
doi: 10.2307/2154257.![]() ![]() ![]() |
[15] |
H. Iwaniec, Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, 17, American Mathematical Society, Providence, RI, 1997.
doi: 10.1090/gsm/017.![]() ![]() ![]() |
[16] |
I. Kim, Counting, mixing and equidistribution of horospheres in geometrically finite rank one locally symmetric manifolds, J. Reine Angew. Math., 704 (2015), 85-133.
doi: 10.1515/crelle-2013-0056.![]() ![]() ![]() |
[17] |
H. D. Kloosterman, On the representation of numbers in the form ax2+by2+ cz2+dt2, Acta Math., 49 (1927), 407-464.
doi: 10.1007/BF02564120.![]() ![]() ![]() |
[18] |
A. Kontorovich and K. Nakamura, Geometry and arithmetic of crystallographic sphere packings, Proc. Natl. Acad. Sci. USA, 116 (2019), 436-441.
doi: 10.1073/pnas.1721104116.![]() ![]() ![]() |
[19] |
A. Kontorovich and H. Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, J. Amer. Math. Soc., 24 (2011), 603-648.
doi: 10.1090/S0894-0347-2011-00691-7.![]() ![]() ![]() |
[20] |
A. Kontorovich, From Apollonius to Zaremba: Local-global phenomena in thin orbits, Bull. Amer. Math. Soc. (N.S.), 50 (2013), 187-228.
doi: 10.1090/S0273-0979-2013-01402-2.![]() ![]() ![]() |
[21] |
A. Kontorovich, Applications of thin orbits, in Dynamics and Analytic Number Theory, London Math. Soc. Lecture Note Ser., 437, Cambridge Univ. Press, Cambridge, 2016, 289–317.
![]() ![]() |
[22] |
R. Lachlan, On systems of circles and spheres, Philos. Roy. Soc. London Ser. A, 177 (1886), 481-625.
![]() |
[23] |
J. Milnor, Hyperbolic geometry: The first 150 years, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 9-24.
doi: 10.1090/S0273-0979-1982-14958-8.![]() ![]() ![]() |
[24] |
K. Nakamura, The local-global principle for integral bends in orthoplicial Apollonian sphere packings, preprint, arXiv: 1401.2980, (2014).
![]() |
[25] |
http://mathworld.wolfram.com/TangentSpheres.html.
![]() |
[26] |
P. Sarnak, Letter to J. Lagarias about integral Apollonian packings, 2007. Available from: http://web.math.princeton.edu/sarnak/AppolonianPackings.pdf.
![]() |
[27] |
F. Soddy, The kiss precise, Nature, 137 (1936), 1021.
doi: 10.1038/1371021a0.![]() ![]() |
[28] |
F. Soddy, The bowl of integers and the hexlet, Nature, 139 (1937), 77-79.
doi: 10.1038/139077a0.![]() ![]() |
[29] |
X. Zhang, On the local-global principle for integral Apollonian-3 Circle packings, preprint, arXiv: 1312.4650, (2013).
![]() ![]() |
A reproduction from [28]