
-
Previous Article
Counting saddle connections in a homology class modulo $ \boldsymbol q $ (with an appendix by Rodolfo Gutiérrez-Romo)
- JMD Home
- This Volume
-
Next Article
Mather theory and symplectic rigidity
The local-global principle for integral Soddy sphere packings
Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 08854, USA |
Fix an integral Soddy sphere packing $ \mathscr{P} $. Let $ \mathscr{B} $ be the set of all bends in $ \mathscr{P} $. A number $ n $ is called represented if $ n\in \mathscr{B} $, that is, if there is a sphere in $ \mathscr{P} $ with bend equal to $ n $. A number $ n $ is called admissible if it is everywhere locally represented, meaning that $ n\in \mathscr{B}( \operatorname{mod} q) $ for all $ q $. It is shown that every sufficiently large admissible number is represented.
References:
[1] |
A. Baragar,
Higher dimensional Apollonian packings, revisited, Geom. Dedicata, 195 (2018), 137-161.
doi: 10.1007/s10711-017-0280-7. |
[2] |
M. Borkovec, W. de Paris and R. Peikert,
The fractal dimension of the Apollonian sphere packing, Fractals, 2 (1994), 521-526.
doi: 10.1142/S0218348X94000739. |
[3] |
J. Bourgain and E. Fuchs,
A proof of the positive density conjecture for integer Apollonian circle packings, J. Amer. Math. Soc., 24 (2011), 945-967.
doi: 10.1090/S0894-0347-2011-00707-8. |
[4] |
J. Bourgain and A. Kontorovich,
On the local-global conjecture for integral Apollonian gaskets, Invent. Math., 196 (2014), 589-650.
doi: 10.1007/s00222-013-0475-y. |
[5] |
D. W. Boyd,
An algorithm for generating the sphere coordinates in a three-dimensional osculatory packing, Math. Comp., 27 (1973), 369-377.
doi: 10.1090/S0025-5718-1973-0338937-6. |
[6] |
D. W. Boyd,
The osculatory packing of a three dimensional sphere, Can. J. Math., 25 (1973), 303-322.
doi: 10.4153/CJM-1973-030-5. |
[7] |
J. W. S. Cassels, Rational Quadratic Forms, London Mathematical Society Monographs, 13, Academic Press, London-New York, 1978.
![]() |
[8] |
R. Descartes, Œuvres, volume 4, (eds. C. Adams and P. Tannery), Paris, 1901. Google Scholar |
[9] |
D. Dias, The local-global principle for integral generalized Apollonian sphere packings, preprint, arXiv: 1401.4789, (2014). Google Scholar |
[10] |
E. Fuchs and K. Sanden,
Some experiments with integral Apollonian circle packings, Exp. Math., 20 (2011), 380-399.
doi: 10.1080/10586458.2011.565255. |
[11] |
R. L. Graham, J. C. Lagarias, C. L. Mallows, A. R. Wilks and C. H. Yan,
Apollonian circle packings: Number theory, J. Number Theory, 100 (2003), 1-45.
doi: 10.1016/S0022-314X(03)00015-5. |
[12] |
R. L. Graham, J. C. Lagarias, C. L. Mallows, A. R. Wilks and C. H. Yan,
Apollonian circle packings: Geometry and group theory. Ⅲ. Higher dimensions, Discrete Comput. Geom., 35 (2006), 37-72.
doi: 10.1007/s00454-005-1197-8. |
[13] |
T. Gossett,
The kiss precise, Nature, 139 (1937), 62.
doi: 10.1038/139062a0. |
[14] |
F. Grunewald and J. Schwermer,
Subgroups of Bianchi groups and arithmetic quotients of hyperbolic 3-space, Trans. Amer. Math. Soc., 335 (1993), 47-78.
doi: 10.2307/2154257. |
[15] |
H. Iwaniec, Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, 17, American Mathematical Society, Providence, RI, 1997.
doi: 10.1090/gsm/017. |
[16] |
I. Kim,
Counting, mixing and equidistribution of horospheres in geometrically finite rank one locally symmetric manifolds, J. Reine Angew. Math., 704 (2015), 85-133.
doi: 10.1515/crelle-2013-0056. |
[17] |
H. D. Kloosterman,
On the representation of numbers in the form ax2+by2+ cz2+dt2, Acta Math., 49 (1927), 407-464.
doi: 10.1007/BF02564120. |
[18] |
A. Kontorovich and K. Nakamura,
Geometry and arithmetic of crystallographic sphere packings, Proc. Natl. Acad. Sci. USA, 116 (2019), 436-441.
doi: 10.1073/pnas.1721104116. |
[19] |
A. Kontorovich and H. Oh,
Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, J. Amer. Math. Soc., 24 (2011), 603-648.
doi: 10.1090/S0894-0347-2011-00691-7. |
[20] |
A. Kontorovich,
From Apollonius to Zaremba: Local-global phenomena in thin orbits, Bull. Amer. Math. Soc. (N.S.), 50 (2013), 187-228.
doi: 10.1090/S0273-0979-2013-01402-2. |
[21] |
A. Kontorovich, Applications of thin orbits, in Dynamics and Analytic Number Theory, London Math. Soc. Lecture Note Ser., 437, Cambridge Univ. Press, Cambridge, 2016, 289–317. |
[22] |
R. Lachlan, On systems of circles and spheres, Philos. Roy. Soc. London Ser. A, 177 (1886), 481-625. Google Scholar |
[23] |
J. Milnor,
Hyperbolic geometry: The first 150 years, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 9-24.
doi: 10.1090/S0273-0979-1982-14958-8. |
[24] |
K. Nakamura, The local-global principle for integral bends in orthoplicial Apollonian sphere packings, preprint, arXiv: 1401.2980, (2014). Google Scholar |
[25] |
http://mathworld.wolfram.com/TangentSpheres.html. Google Scholar |
[26] |
P. Sarnak, Letter to J. Lagarias about integral Apollonian packings, 2007. Available from: http://web.math.princeton.edu/sarnak/AppolonianPackings.pdf. Google Scholar |
[27] |
F. Soddy,
The kiss precise, Nature, 137 (1936), 1021.
doi: 10.1038/1371021a0. |
[28] |
F. Soddy,
The bowl of integers and the hexlet, Nature, 139 (1937), 77-79.
doi: 10.1038/139077a0. |
[29] |
X. Zhang, On the local-global principle for integral Apollonian-3 Circle packings, preprint, arXiv: 1312.4650, (2013). |
show all references
References:
[1] |
A. Baragar,
Higher dimensional Apollonian packings, revisited, Geom. Dedicata, 195 (2018), 137-161.
doi: 10.1007/s10711-017-0280-7. |
[2] |
M. Borkovec, W. de Paris and R. Peikert,
The fractal dimension of the Apollonian sphere packing, Fractals, 2 (1994), 521-526.
doi: 10.1142/S0218348X94000739. |
[3] |
J. Bourgain and E. Fuchs,
A proof of the positive density conjecture for integer Apollonian circle packings, J. Amer. Math. Soc., 24 (2011), 945-967.
doi: 10.1090/S0894-0347-2011-00707-8. |
[4] |
J. Bourgain and A. Kontorovich,
On the local-global conjecture for integral Apollonian gaskets, Invent. Math., 196 (2014), 589-650.
doi: 10.1007/s00222-013-0475-y. |
[5] |
D. W. Boyd,
An algorithm for generating the sphere coordinates in a three-dimensional osculatory packing, Math. Comp., 27 (1973), 369-377.
doi: 10.1090/S0025-5718-1973-0338937-6. |
[6] |
D. W. Boyd,
The osculatory packing of a three dimensional sphere, Can. J. Math., 25 (1973), 303-322.
doi: 10.4153/CJM-1973-030-5. |
[7] |
J. W. S. Cassels, Rational Quadratic Forms, London Mathematical Society Monographs, 13, Academic Press, London-New York, 1978.
![]() |
[8] |
R. Descartes, Œuvres, volume 4, (eds. C. Adams and P. Tannery), Paris, 1901. Google Scholar |
[9] |
D. Dias, The local-global principle for integral generalized Apollonian sphere packings, preprint, arXiv: 1401.4789, (2014). Google Scholar |
[10] |
E. Fuchs and K. Sanden,
Some experiments with integral Apollonian circle packings, Exp. Math., 20 (2011), 380-399.
doi: 10.1080/10586458.2011.565255. |
[11] |
R. L. Graham, J. C. Lagarias, C. L. Mallows, A. R. Wilks and C. H. Yan,
Apollonian circle packings: Number theory, J. Number Theory, 100 (2003), 1-45.
doi: 10.1016/S0022-314X(03)00015-5. |
[12] |
R. L. Graham, J. C. Lagarias, C. L. Mallows, A. R. Wilks and C. H. Yan,
Apollonian circle packings: Geometry and group theory. Ⅲ. Higher dimensions, Discrete Comput. Geom., 35 (2006), 37-72.
doi: 10.1007/s00454-005-1197-8. |
[13] |
T. Gossett,
The kiss precise, Nature, 139 (1937), 62.
doi: 10.1038/139062a0. |
[14] |
F. Grunewald and J. Schwermer,
Subgroups of Bianchi groups and arithmetic quotients of hyperbolic 3-space, Trans. Amer. Math. Soc., 335 (1993), 47-78.
doi: 10.2307/2154257. |
[15] |
H. Iwaniec, Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, 17, American Mathematical Society, Providence, RI, 1997.
doi: 10.1090/gsm/017. |
[16] |
I. Kim,
Counting, mixing and equidistribution of horospheres in geometrically finite rank one locally symmetric manifolds, J. Reine Angew. Math., 704 (2015), 85-133.
doi: 10.1515/crelle-2013-0056. |
[17] |
H. D. Kloosterman,
On the representation of numbers in the form ax2+by2+ cz2+dt2, Acta Math., 49 (1927), 407-464.
doi: 10.1007/BF02564120. |
[18] |
A. Kontorovich and K. Nakamura,
Geometry and arithmetic of crystallographic sphere packings, Proc. Natl. Acad. Sci. USA, 116 (2019), 436-441.
doi: 10.1073/pnas.1721104116. |
[19] |
A. Kontorovich and H. Oh,
Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, J. Amer. Math. Soc., 24 (2011), 603-648.
doi: 10.1090/S0894-0347-2011-00691-7. |
[20] |
A. Kontorovich,
From Apollonius to Zaremba: Local-global phenomena in thin orbits, Bull. Amer. Math. Soc. (N.S.), 50 (2013), 187-228.
doi: 10.1090/S0273-0979-2013-01402-2. |
[21] |
A. Kontorovich, Applications of thin orbits, in Dynamics and Analytic Number Theory, London Math. Soc. Lecture Note Ser., 437, Cambridge Univ. Press, Cambridge, 2016, 289–317. |
[22] |
R. Lachlan, On systems of circles and spheres, Philos. Roy. Soc. London Ser. A, 177 (1886), 481-625. Google Scholar |
[23] |
J. Milnor,
Hyperbolic geometry: The first 150 years, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 9-24.
doi: 10.1090/S0273-0979-1982-14958-8. |
[24] |
K. Nakamura, The local-global principle for integral bends in orthoplicial Apollonian sphere packings, preprint, arXiv: 1401.2980, (2014). Google Scholar |
[25] |
http://mathworld.wolfram.com/TangentSpheres.html. Google Scholar |
[26] |
P. Sarnak, Letter to J. Lagarias about integral Apollonian packings, 2007. Available from: http://web.math.princeton.edu/sarnak/AppolonianPackings.pdf. Google Scholar |
[27] |
F. Soddy,
The kiss precise, Nature, 137 (1936), 1021.
doi: 10.1038/1371021a0. |
[28] |
F. Soddy,
The bowl of integers and the hexlet, Nature, 139 (1937), 77-79.
doi: 10.1038/139077a0. |
[29] |
X. Zhang, On the local-global principle for integral Apollonian-3 Circle packings, preprint, arXiv: 1312.4650, (2013). |
[1] |
Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065 |
[2] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[3] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[4] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[5] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[6] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[7] |
Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021 doi: 10.3934/jgm.2021002 |
[8] |
Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263 |
[9] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[10] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[11] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[12] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[13] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[14] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[15] |
Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020364 |
[16] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[17] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[18] |
Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345 |
[19] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[20] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]