-
Previous Article
Topological proof of Benoist-Quint's orbit closure theorem for $ \boldsymbol{ \operatorname{SO}(d, 1)} $
- JMD Home
- This Volume
-
Next Article
The local-global principle for integral Soddy sphere packings
Counting saddle connections in a homology class modulo $ \boldsymbol q $ (with an appendix by Rodolfo Gutiérrez-Romo)
1. | Department of Mathematical Sciences, Durham University, Lower Mountjoy, Stockton Rd, Durham DH1 3LE, United Kingdom |
2. | Faculty of Mathematics, Technion, Haifa, 32000 Israel |
We give effective estimates for the number of saddle connections on a translation surface that have length $ \leq L $ and are in a prescribed homology class modulo $ q $. Our estimates apply to almost all translation surfaces in a stratum of the moduli space of translation surfaces, with respect to the Masur–Veech measure on the stratum.
References:
[1] |
J. S. Athreya, Y. Cheung and H. Masur,
Siegel–Veech transforms are in $L^{2}$, J. Mod. Dyn., 14 (2019), 1-19.
|
[2] |
A. Avila, S. Gouëzel and J.-C. Yoccoz,
Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143-211.
doi: 10.1007/s10240-006-0001-5. |
[3] |
A. Avila, C. Matheus and J.-C. Yoccoz,
Zorich conjecture for hyperelliptic Rauzy-Veech groups, Math. Ann., 370 (2018), 785-809.
doi: 10.1007/s00208-017-1568-5. |
[4] |
A. Avila and M. Viana,
Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture, Acta Math., 198 (2007), 1-56.
doi: 10.1007/s11511-007-0012-1. |
[5] |
B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T), New Mathematical Monographs, 11, Cambridge University Press, Cambridge, 2008.
doi: 10.1017/CBO9780511542749. |
[6] |
E. Breuillard and H. Oh, editors, Thin Groups and Superstrong Approximation, Mathematical Sciences Research Institute Publications, 61, Cambridge University Press, Cambridge, 2014; Selected expanded papers from the workshop held in Berkeley, CA, February 6–10, 2012. |
[7] |
M. Burger,
Kazhdan constants for SL(3, Z), J. Reine Angew. Math., 413 (1991), 36-67.
doi: 10.1515/crll.1991.413.36. |
[8] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.
doi: 10.2307/120984. |
[9] |
A. Eskin and H. Masur,
Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, 21 (2001), 443-478.
doi: 10.1017/S0143385701001225. |
[10] |
A. Eskin, H. Masur and A. Zorich,
Moduli spaces of abelian differentials: The principal boundary, counting problems, and the Siegel-Veech constants, Publ. Math. Inst. Hautes Études Sci., 97 (2003), 61-179.
doi: 10.1007/s10240-003-0015-1. |
[11] |
A. Eskin and M. Mirzakhani,
Counting closed geodesics in moduli space, J. Mod. Dyn., 5 (2011), 71-105.
doi: 10.3934/jmd.2011.5.71. |
[12] |
R. Gutiérrez-Romo,
Classification of Rauzy–Veech groups: Proof of the Zorich conjecture, Invent. Math., 215 (2019), 741-778.
doi: 10.1007/s00222-018-0836-7. |
[13] |
D. A. Každan,
On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen., 1 (1967), 71-74.
|
[14] |
B. Kirkwood and B. R. McDonald,
The symplectic group over a ring with one in its stable range, Pacific J. Math., 92 (1981), 111-125.
doi: 10.2140/pjm.1981.92.111. |
[15] |
M. Kontsevich and A. Zorich,
Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[16] |
A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Springer Science and Business Media, 2010.
doi: 10.1007/978-3-0346-0332-4. |
[17] |
M. Magee, On Selberg's Eigenvalue Conjecture for moduli spaces of abelian differentials, arXiv: 1609.05500, 2018. |
[18] |
G. A. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces, in Dynamical Systems and Ergodic Theory (Warsaw, 1986), Banach Center Publ., 23, PWN, Warsaw, 1989,399–409. |
[19] |
H. Masur,
Interval exchange transformations and measured foliations, Ann. of Math. (2), 115 (1982), 169-200.
doi: 10.2307/1971341. |
[20] |
H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, in Holomorphic Functions and Moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988,215–228.
doi: 10.1007/978-1-4613-9602-4_20. |
[21] |
H. Masur,
The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems, 10 (1990), 151-176.
doi: 10.1017/S0143385700005459. |
[22] |
A. Nevo, R. Rühr and B. Weiss, Effective counting on translation surfaces, arXiv: 1708.06263, 2017. |
[23] |
A. Rapinchuk,
Strong approximation for algebraic groups, Thin Groups and Superstrong Approximation, 61 (2014), 269-298.
|
[24] |
W. A. Veech,
Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242.
doi: 10.2307/1971391. |
[25] |
W. A. Veech,
The Teichmüller geodesic flow, Ann. of Math. (2), 124 (1986), 441-530.
doi: 10.2307/2007091. |
[26] |
W. A. Veech,
Siegel measures, Ann. of Math. (2), 148 (1998), 895-944.
doi: 10.2307/121033. |
[27] |
J.-C. Yoccoz, Interval exchange maps and translation surfaces, in Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010, 1–69. |
[28] |
A. Zorich, How do the leaves of a closed 1-form wind around a surface?, in Pseudoperiodic Topology, Amer. Math. Soc. Transl. Ser. 2,197, Amer. Math. Soc., Providence, RI, 1999,135–178.
doi: 10.1090/trans2/197/05. |
show all references
References:
[1] |
J. S. Athreya, Y. Cheung and H. Masur,
Siegel–Veech transforms are in $L^{2}$, J. Mod. Dyn., 14 (2019), 1-19.
|
[2] |
A. Avila, S. Gouëzel and J.-C. Yoccoz,
Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143-211.
doi: 10.1007/s10240-006-0001-5. |
[3] |
A. Avila, C. Matheus and J.-C. Yoccoz,
Zorich conjecture for hyperelliptic Rauzy-Veech groups, Math. Ann., 370 (2018), 785-809.
doi: 10.1007/s00208-017-1568-5. |
[4] |
A. Avila and M. Viana,
Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture, Acta Math., 198 (2007), 1-56.
doi: 10.1007/s11511-007-0012-1. |
[5] |
B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T), New Mathematical Monographs, 11, Cambridge University Press, Cambridge, 2008.
doi: 10.1017/CBO9780511542749. |
[6] |
E. Breuillard and H. Oh, editors, Thin Groups and Superstrong Approximation, Mathematical Sciences Research Institute Publications, 61, Cambridge University Press, Cambridge, 2014; Selected expanded papers from the workshop held in Berkeley, CA, February 6–10, 2012. |
[7] |
M. Burger,
Kazhdan constants for SL(3, Z), J. Reine Angew. Math., 413 (1991), 36-67.
doi: 10.1515/crll.1991.413.36. |
[8] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.
doi: 10.2307/120984. |
[9] |
A. Eskin and H. Masur,
Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, 21 (2001), 443-478.
doi: 10.1017/S0143385701001225. |
[10] |
A. Eskin, H. Masur and A. Zorich,
Moduli spaces of abelian differentials: The principal boundary, counting problems, and the Siegel-Veech constants, Publ. Math. Inst. Hautes Études Sci., 97 (2003), 61-179.
doi: 10.1007/s10240-003-0015-1. |
[11] |
A. Eskin and M. Mirzakhani,
Counting closed geodesics in moduli space, J. Mod. Dyn., 5 (2011), 71-105.
doi: 10.3934/jmd.2011.5.71. |
[12] |
R. Gutiérrez-Romo,
Classification of Rauzy–Veech groups: Proof of the Zorich conjecture, Invent. Math., 215 (2019), 741-778.
doi: 10.1007/s00222-018-0836-7. |
[13] |
D. A. Každan,
On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen., 1 (1967), 71-74.
|
[14] |
B. Kirkwood and B. R. McDonald,
The symplectic group over a ring with one in its stable range, Pacific J. Math., 92 (1981), 111-125.
doi: 10.2140/pjm.1981.92.111. |
[15] |
M. Kontsevich and A. Zorich,
Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[16] |
A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Springer Science and Business Media, 2010.
doi: 10.1007/978-3-0346-0332-4. |
[17] |
M. Magee, On Selberg's Eigenvalue Conjecture for moduli spaces of abelian differentials, arXiv: 1609.05500, 2018. |
[18] |
G. A. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces, in Dynamical Systems and Ergodic Theory (Warsaw, 1986), Banach Center Publ., 23, PWN, Warsaw, 1989,399–409. |
[19] |
H. Masur,
Interval exchange transformations and measured foliations, Ann. of Math. (2), 115 (1982), 169-200.
doi: 10.2307/1971341. |
[20] |
H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, in Holomorphic Functions and Moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988,215–228.
doi: 10.1007/978-1-4613-9602-4_20. |
[21] |
H. Masur,
The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems, 10 (1990), 151-176.
doi: 10.1017/S0143385700005459. |
[22] |
A. Nevo, R. Rühr and B. Weiss, Effective counting on translation surfaces, arXiv: 1708.06263, 2017. |
[23] |
A. Rapinchuk,
Strong approximation for algebraic groups, Thin Groups and Superstrong Approximation, 61 (2014), 269-298.
|
[24] |
W. A. Veech,
Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242.
doi: 10.2307/1971391. |
[25] |
W. A. Veech,
The Teichmüller geodesic flow, Ann. of Math. (2), 124 (1986), 441-530.
doi: 10.2307/2007091. |
[26] |
W. A. Veech,
Siegel measures, Ann. of Math. (2), 148 (1998), 895-944.
doi: 10.2307/121033. |
[27] |
J.-C. Yoccoz, Interval exchange maps and translation surfaces, in Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010, 1–69. |
[28] |
A. Zorich, How do the leaves of a closed 1-form wind around a surface?, in Pseudoperiodic Topology, Amer. Math. Soc. Transl. Ser. 2,197, Amer. Math. Soc., Providence, RI, 1999,135–178.
doi: 10.1090/trans2/197/05. |
[1] |
C. Alonso-González, M. I. Camacho, F. Cano. Topological classification of multiple saddle connections. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 395-414. doi: 10.3934/dcds.2006.15.395 |
[2] |
Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004 |
[3] |
Alexandre A. P. Rodrigues. Moduli for heteroclinic connections involving saddle-foci and periodic solutions. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3155-3182. doi: 10.3934/dcds.2015.35.3155 |
[4] |
Bruno Colbois, Alexandre Girouard. The spectral gap of graphs and Steklov eigenvalues on surfaces. Electronic Research Announcements, 2014, 21: 19-27. doi: 10.3934/era.2014.21.19 |
[5] |
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917 |
[6] |
Rúben Sousa, Semyon Yakubovich. The spectral expansion approach to index transforms and connections with the theory of diffusion processes. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2351-2378. doi: 10.3934/cpaa.2018112 |
[7] |
Francisco Arana-Herrera. Counting square-tiled surfaces with prescribed real and imaginary foliations and connections to Mirzakhani's asymptotics for simple closed hyperbolic geodesics. Journal of Modern Dynamics, 2020, 16: 81-107. doi: 10.3934/jmd.2020004 |
[8] |
Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205 |
[9] |
Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239 |
[10] |
Soña Pavlíková, Daniel Ševčovič. On construction of upper and lower bounds for the HOMO-LUMO spectral gap. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 53-69. doi: 10.3934/naco.2019005 |
[11] |
Shuang Chen, Jun Shen. Large spectral gap induced by small delay and its application to reduction. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4533-4564. doi: 10.3934/dcds.2020190 |
[12] |
Luís Simão Ferreira. A lower bound for the spectral gap of the conjugate Kac process with 3 interacting particles. Kinetic and Related Models, 2022, 15 (1) : 91-117. doi: 10.3934/krm.2021045 |
[13] |
Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004 |
[14] |
Nikolai Dokuchaev. On strong causal binomial approximation for stochastic processes. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1549-1562. doi: 10.3934/dcdsb.2014.19.1549 |
[15] |
Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235 |
[16] |
Lam Quoc Anh, Nguyen Van Hung. Gap functions and Hausdorff continuity of solution mappings to parametric strong vector quasiequilibrium problems. Journal of Industrial and Management Optimization, 2018, 14 (1) : 65-79. doi: 10.3934/jimo.2017037 |
[17] |
Andrea Bondesan, Laurent Boudin, Marc Briant, Bérénice Grec. Stability of the spectral gap for the Boltzmann multi-species operator linearized around non-equilibrium maxwell distributions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2549-2573. doi: 10.3934/cpaa.2020112 |
[18] |
Stefano Galatolo, Rafael Lucena. Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenz-like maps. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1309-1360. doi: 10.3934/dcds.2020079 |
[19] |
Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977 |
[20] |
Naoufel Ben Abdallah, Raymond El Hajj. Diffusion and guiding center approximation for particle transport in strong magnetic fields. Kinetic and Related Models, 2008, 1 (3) : 331-354. doi: 10.3934/krm.2008.1.331 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]