• Previous Article
    Uniform distribution of saddle connection lengths (with an appendix by Daniel El-Baz and Bingrong Huang)
  • JMD Home
  • This Volume
  • Next Article
    Topological proof of Benoist-Quint's orbit closure theorem for $ \boldsymbol{ \operatorname{SO}(d, 1)} $
  2019, 15: 277-327. doi: 10.3934/jmd.2019022

Almost-prime times in horospherical flows on the space of lattices

Department of Mathematics, Yale University, 10 Hillhouse Ave., New Haven, CT 06520-8283, USA

Received  June 06, 2018 Revised  April 20, 2019 Published  November 2019

An integer is called almost-prime if it has fewer than a fixed number of prime factors. In this paper, we study the asymptotic distribution of almost-prime entries in horospherical flows on $ \Gamma\backslash {{\rm{SL}}}_n(\mathbb{R}) $, where $ \Gamma $ is either $ {{\rm{SL}}}_n(\mathbb{Z}) $ or a cocompact lattice. In the cocompact case, we obtain a result that implies density for almost-primes in horospherical flows where the number of prime factors is independent of basepoint, and in the space of lattices we show the density of almost-primes in abelian horospherical orbits of points satisfying a certain Diophantine condition. Along the way we give an effective equidistribution result for arbitrary horospherical flows on the space of lattices, as well as an effective rate for the equidistribution of arithmetic progressions in abelian horospherical flows.

Citation: Taylor McAdam. Almost-prime times in horospherical flows on the space of lattices. Journal of Modern Dynamics, 2019, 15: 277-327. doi: 10.3934/jmd.2019022
References:
[1]

A018804, On-line encyclopedia of integer sequences, https://oeis.org/A018804 (accessed Feb. 2, 2018). Google Scholar

[2] M. B. Bekka and M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, Cambridge University Press, 2000.  doi: 10.1017/CBO9780511758898.  Google Scholar
[3]

Y. Benoist and H. Oh, Effective equidistribution of $S$-integral points on symmetric varieties, Ann. Inst. Fourier (Grenoble), 62 (2012), 1889-1942.  doi: 10.5802/aif.2738.  Google Scholar

[4]

O. Bordellès, Mean values of generalized gcd-sum and lcm-sum functions, J. Integer Seq., 10 (2007), Article 07.9.2, 13pp.  Google Scholar

[5]

O. Bordellès, A note on the average order of the gcd-sum function, J. Integer Seq., 10 (2007), Article 07.3.3, 4pp.  Google Scholar

[6]

J. Bourgain, An approach to pointwise ergodic theorems, in Geometric Aspects of Functional Analysis (Israel Math. Seminar), Lecture Notes in Math., 1318, Springer Berlin, 1988,204–223. doi: 10.1007/BFb0081742.  Google Scholar

[7]

J. BourgainP. Sarnak and T. Ziegler, Disjointness of Möbius from horocycle flows, Developments in Mathematics, 28 (2013), 67-83.  doi: 10.1007/978-1-4614-4075-8_5.  Google Scholar

[8]

K. A. Broughan, The gcd-sum function, J. Integer Seq., 4 (2001), Article 01.2.2, 19pp.  Google Scholar

[9]

K. A. Broughan, The average order of the Dirichlet series of the gcd-sum function, J. Integer Seq., 10 (2007), Article 07.4.2, 6pp.  Google Scholar

[10]

J. A. Brudnyĭ and M. I. Ganzburg, On an extremal problem for polynomials in $n$ variables, Math. USSR Izv., 7 (1973), 344-355.   Google Scholar

[11]

M. Burger, Horocycle flow on geometrically finite surfaces, Duke Math. J., 61 (1990), 779-803.  doi: 10.1215/S0012-7094-90-06129-0.  Google Scholar

[12]

E. Cesàro, Étude moyenne di plus grand commun diviseur de deux nombres, Annali di Matematica Pura ed Applicata (1867-1897), 13 (1885), 235-250.   Google Scholar

[13]

J. Chidambaraswamy and R. Sitaramachandra Rao, Asymptotic results for a class of arithmetical functions, Monatsh. Math., 99 (1985), 19-27.  doi: 10.1007/BF01300735.  Google Scholar

[14]

K. DabbsM. Kelly and H. Li, Effective equidistribution of translates of maximal horospherical measures in the space of lattices, J. Mod. Dyn., 10 (2016), 229-254.  doi: 10.3934/jmd.2016.10.229.  Google Scholar

[15]

S. G. Dani, Invariant measures of horospherical flows on noncompact homogeneous spaces, Invent. Math., 47 (1978), 101-138.  doi: 10.1007/BF01578067.  Google Scholar

[16]

S. G. Dani, Invariant measures and minimal sets of horospherical flows, Invent. Math., 64 (1981), 357-385.  doi: 10.1007/BF01389173.  Google Scholar

[17]

S. G. Dani, On orbits of unipotent flows on homogeneous spaces, Ergodic Theory Dynam. Systems, 4 (1984), 25-34.  doi: 10.1017/S0143385700002248.  Google Scholar

[18]

S. G. Dani, On orbits of unipotent flows on homogeneous spaces II, Ergodic Theory Dynam. Systems, 6 (1986), 167-182.  doi: 10.1017/S0143385700003382.  Google Scholar

[19]

S. G. Dani, Orbits of horospherical flows, Duke Math. J., 53 (1986), 177-188.  doi: 10.1215/S0012-7094-86-05312-3.  Google Scholar

[20]

S. G. Dani and G. A. Margulis, Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., 101 (1991), 1-17.  doi: 10.1007/BF02872005.  Google Scholar

[21]

H. Davenport, Multiplicative Number Theory, Graduate Texts in Mathematics, 74, Springer-Verlag, 1980.  Google Scholar

[22]

L. E. Dickson, History of the Theory of Numbers. Vol. I: Divisibility and Primality, Chelsea Publishing Co., 1966.  Google Scholar

[23]

M. Einsiedler, G. A. Margulis, A. Mohammadi and A. Venkatesh, Effective equidistribution and property tau, Effective Equidistribution and Property $ (\tau)$, (2019), 1–77. doi: 10.1090/jams/930.  Google Scholar

[24]

M. EinsiedlerG. A. Margulis and A. Venkatesh, Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Invent. Math., 177 (2009), 137-212.  doi: 10.1007/s00222-009-0177-7.  Google Scholar

[25]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Springer-Verlag London, 2011. doi: 10.1007/978-0-85729-021-2.  Google Scholar

[26]

R. Ellis and W. Perrizo, Unique ergodicity of flows on homogeneous spaces, Israel J. Math., 29 (1978), 276-284.  doi: 10.1007/BF02762015.  Google Scholar

[27]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.  doi: 10.1215/S0012-7094-03-11932-8.  Google Scholar

[28]

H. Furstenberg, The unique ergodicity of the horocycle flow, in Recent Advances in Topological Dynamics (Proc. Conf., Yale Univ., New Haven, CT, 1972), Lecture Notes in Math., 318, Springer, Berlin, 1973, 95–115.  Google Scholar

[29]

A. Gorodnik, Open problems in dynamics and related fields, J. Mod. Dyn., 1 (2007), 1-35.  doi: 10.3934/jmd.2007.1.1.  Google Scholar

[30]

A. GorodnikF. Maucourant and H. Oh, Manin's and Peyre's conjectures on rational points and adelic mixing, Ann. Sci. Éc. Norm. Supér. (4), 41 (2008), 383-435.  doi: 10.24033/asens.2071.  Google Scholar

[31]

B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2), 175 (2012), 465-540.  doi: 10.4007/annals.2012.175.2.2.  Google Scholar

[32] H. Halberstam and H.-E. Richert, Sieve Methods, London Mathematical Society Monographs, 4, Academic Press, London-New York, 1974.   Google Scholar
[33]

P. Haukkanen, On a gcd-sum function, Aequationes Math., 76 (2008), 168-178.  doi: 10.1007/s00010-007-2923-5.  Google Scholar

[34]

G. A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J., 2 (1936), 530-542.  doi: 10.1215/S0012-7094-36-00246-6.  Google Scholar

[35]

H. Iwaniec and E. Kowalski, Analytic Number Theory, Colloquium Publications, 53, Amer. Math. Society, Providence, RI, 2004. doi: 10.1090/coll/053.  Google Scholar

[36]

A. Katok and R. J. Spatzier, First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Publications mathématiques de l'IHÉS, 79 (1994), 131–156.  Google Scholar

[37]

D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in Sinaĭ's Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2,171, Adv. Math. Soc., Providence, RI, 1996,141–172. doi: 10.1090/trans2/171/11.  Google Scholar

[38]

D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2), 148 (1998), 339-360.  doi: 10.2307/120997.  Google Scholar

[39]

D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.  doi: 10.1007/s002220050350.  Google Scholar

[40]

D. Y. Kleinbock and G. A. Margulis, On effective equidistribution of expanding translates of certain orbits in the space of lattices, in Number Theory, Analysis and Geometry, Springer, Boston, 2012,385–396. doi: 10.1007/978-1-4614-1260-1_18.  Google Scholar

[41]

A. W. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics, 140, Birkhäuser Boston, Inc., 1996. doi: 10.1007/978-1-4757-2453-0.  Google Scholar

[42]

M. Lee and H. Oh, Effective equidistribution of closed horocycles for geometrically finite surfaces, preprint, arXiv: 1202.0848, (2012). Google Scholar

[43]

E. Lindenstrauss, G. A. Margulis, A. Mohammadi and N. Shah, Quantitative behavior of unipotent flows and an effective avoidance principle, preprint, arXiv: 1904.00290, (2019). Google Scholar

[44]

J. Liu and P. Sarnak, The Möbius function and distal flows, Duke Math. J., 164 (2015), 1353-1399.  doi: 10.1215/00127094-2916213.  Google Scholar

[45]

G. A. Margulis, On some Aspects of the Theory of Anosov Systems, Ph.D. thesis, Lomonosov Moscow State University (1970) (in Russian); English transl.: Springer Monographs in Mathematics, Springer, Berlin, 2004. doi: 10.1007/978-3-662-09070-1.  Google Scholar

[46]

G. A. Margulis, On the action of unipotent groups in a lattice space, Mat. Sb. (N.S.), 86 (1971), 552-556.   Google Scholar

[47]

G. A. Margulis, On the action of unipotent groups in the space of lattices, in Lie Groups and Their Representations (Proc. Summer School, Bolyai, János Math. Soc., Budapest, 1971), Wiley, New York, 1975,365–370.  Google Scholar

[48]

G. A. Margulis, Formes quadratriques indéfinies et flots unipotents sur les espaces homogènes, C. R. Acad. Sci. Paris Sér. I Math., 304 (1987), 249-253.   Google Scholar

[49]

G. A. Margulis, Discrete subgroups and ergodic theory, in Number Theory, Trace Formulas and Discrete Groups (Symposium in honor of Atle Selberg, Oslo, 1987), Academic Press, Boston, 1989, 377–398.  Google Scholar

[50]

G. A. Margulis and G. M. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., 116 (1994), 347-392.  doi: 10.1007/BF01231565.  Google Scholar

[51]

A. Nevo and P. Sarnak, Prime and almost prime integral points on principal homogeneous spaces, Acta Math., 205 (2010), 361-402.  doi: 10.1007/s11511-010-0057-4.  Google Scholar

[52]

H. Oh, Tempered subgroups and representations with minimal decay of matrix coefficients, Bull. Math. Soc. France, 126 (1998), 355-380.  doi: 10.24033/bsmf.2329.  Google Scholar

[53]

H. Oh, Uniform pointwise bounds for decay of matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., 113 (2002), 133-192.  doi: 10.1215/S0012-7094-02-11314-3.  Google Scholar

[54]

R. Peckner, Möbius disjointness for homogeneous dynamics, Duke Math. J., 167 (2018), 2745-2792.  doi: 10.1215/00127094-2018-0026.  Google Scholar

[55]

S. S. Pillai, On an arithmetic function, J. of the Annamalai Univ., 2 (1933), 243-248.   Google Scholar

[56]

M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[57]

M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. (2), 134 (1991), 545-607.  doi: 10.2307/2944357.  Google Scholar

[58]

M. Ratner, Invariant measures and orbit closures for unipotent actions on homogeneous spaces, Geom. Funct. Anal., 4 (1994), 236-257.  doi: 10.1007/BF01895839.  Google Scholar

[59]

E. J. Remez, Sur une propriété des polynômes de Tchebyscheff, Comm. Inst. Sci. Kharkow, 13 (1936), 93-95.   Google Scholar

[60]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math., 34 (1981), 719-739.  doi: 10.1002/cpa.3160340602.  Google Scholar

[61]

P. Sarnak and A. Ubis, The horocycle flow at prime times, J. Math. Pures Appl. (6), 103 (2015), 575-618.  doi: 10.1016/j.matpur.2014.07.004.  Google Scholar

[62]

N. A. Shah, Limit distributions of polynomial trajectories on homogeneous spaces, Duke Math. J., 75 (1994), 711-732.  doi: 10.1215/S0012-7094-94-07521-2.  Google Scholar

[63]

A. Strömbergsson, On the uniform equidistribution of long closed horocycles, Duke Math. J., 123 (2004), 507-547.  doi: 10.1215/S0012-7094-04-12334-6.  Google Scholar

[64]

A. Strömbergsson, On the deviation of ergodic averages for horocycle flows, J. Mod. Dyn., 7 (2013), 291-328.  doi: 10.3934/jmd.2013.7.291.  Google Scholar

[65]

A. Strömbergsson, An effective Ratner equidistribution result for ${\rm SL}(2, \mathbb{R})\ltimes\mathbb{R}^2$, Duke Math. J., 164 (2015), 843-902.  doi: 10.1215/00127094-2885873.  Google Scholar

[66]

Y. Tanigawa and W. Zhai, On the gcd-sum function, J. Integer Seq., 11 (2008), Article 08.2.3, 11pp.  Google Scholar

[67]

L. Tóth, A generalization of Pillai's arithmetical function involving regular convolutions, Acta Math. Inform. Univ. Ostraviensis, 6 (1998), 203-217.   Google Scholar

[68]

L. Tóth, A survey of gcd-sum functions, J. Integer Seq., 13 (2010), Article 10.8.1, 23pp.  Google Scholar

[69]

L. Tóth, Another generalization of the gcd-sum function, Arab. J. Math. (Springer), 2 (2013), 313-320.  doi: 10.1007/s40065-013-0077-y.  Google Scholar

[70]

W. A. Veech, Unique ergodicity of horospherical flows, Amer. J. Math., 99 (1977), 827-859.  doi: 10.2307/2373868.  Google Scholar

[71]

A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math. (2), 172 (2010), 989-1094.  doi: 10.4007/annals.2010.172.989.  Google Scholar

show all references

References:
[1]

A018804, On-line encyclopedia of integer sequences, https://oeis.org/A018804 (accessed Feb. 2, 2018). Google Scholar

[2] M. B. Bekka and M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, Cambridge University Press, 2000.  doi: 10.1017/CBO9780511758898.  Google Scholar
[3]

Y. Benoist and H. Oh, Effective equidistribution of $S$-integral points on symmetric varieties, Ann. Inst. Fourier (Grenoble), 62 (2012), 1889-1942.  doi: 10.5802/aif.2738.  Google Scholar

[4]

O. Bordellès, Mean values of generalized gcd-sum and lcm-sum functions, J. Integer Seq., 10 (2007), Article 07.9.2, 13pp.  Google Scholar

[5]

O. Bordellès, A note on the average order of the gcd-sum function, J. Integer Seq., 10 (2007), Article 07.3.3, 4pp.  Google Scholar

[6]

J. Bourgain, An approach to pointwise ergodic theorems, in Geometric Aspects of Functional Analysis (Israel Math. Seminar), Lecture Notes in Math., 1318, Springer Berlin, 1988,204–223. doi: 10.1007/BFb0081742.  Google Scholar

[7]

J. BourgainP. Sarnak and T. Ziegler, Disjointness of Möbius from horocycle flows, Developments in Mathematics, 28 (2013), 67-83.  doi: 10.1007/978-1-4614-4075-8_5.  Google Scholar

[8]

K. A. Broughan, The gcd-sum function, J. Integer Seq., 4 (2001), Article 01.2.2, 19pp.  Google Scholar

[9]

K. A. Broughan, The average order of the Dirichlet series of the gcd-sum function, J. Integer Seq., 10 (2007), Article 07.4.2, 6pp.  Google Scholar

[10]

J. A. Brudnyĭ and M. I. Ganzburg, On an extremal problem for polynomials in $n$ variables, Math. USSR Izv., 7 (1973), 344-355.   Google Scholar

[11]

M. Burger, Horocycle flow on geometrically finite surfaces, Duke Math. J., 61 (1990), 779-803.  doi: 10.1215/S0012-7094-90-06129-0.  Google Scholar

[12]

E. Cesàro, Étude moyenne di plus grand commun diviseur de deux nombres, Annali di Matematica Pura ed Applicata (1867-1897), 13 (1885), 235-250.   Google Scholar

[13]

J. Chidambaraswamy and R. Sitaramachandra Rao, Asymptotic results for a class of arithmetical functions, Monatsh. Math., 99 (1985), 19-27.  doi: 10.1007/BF01300735.  Google Scholar

[14]

K. DabbsM. Kelly and H. Li, Effective equidistribution of translates of maximal horospherical measures in the space of lattices, J. Mod. Dyn., 10 (2016), 229-254.  doi: 10.3934/jmd.2016.10.229.  Google Scholar

[15]

S. G. Dani, Invariant measures of horospherical flows on noncompact homogeneous spaces, Invent. Math., 47 (1978), 101-138.  doi: 10.1007/BF01578067.  Google Scholar

[16]

S. G. Dani, Invariant measures and minimal sets of horospherical flows, Invent. Math., 64 (1981), 357-385.  doi: 10.1007/BF01389173.  Google Scholar

[17]

S. G. Dani, On orbits of unipotent flows on homogeneous spaces, Ergodic Theory Dynam. Systems, 4 (1984), 25-34.  doi: 10.1017/S0143385700002248.  Google Scholar

[18]

S. G. Dani, On orbits of unipotent flows on homogeneous spaces II, Ergodic Theory Dynam. Systems, 6 (1986), 167-182.  doi: 10.1017/S0143385700003382.  Google Scholar

[19]

S. G. Dani, Orbits of horospherical flows, Duke Math. J., 53 (1986), 177-188.  doi: 10.1215/S0012-7094-86-05312-3.  Google Scholar

[20]

S. G. Dani and G. A. Margulis, Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., 101 (1991), 1-17.  doi: 10.1007/BF02872005.  Google Scholar

[21]

H. Davenport, Multiplicative Number Theory, Graduate Texts in Mathematics, 74, Springer-Verlag, 1980.  Google Scholar

[22]

L. E. Dickson, History of the Theory of Numbers. Vol. I: Divisibility and Primality, Chelsea Publishing Co., 1966.  Google Scholar

[23]

M. Einsiedler, G. A. Margulis, A. Mohammadi and A. Venkatesh, Effective equidistribution and property tau, Effective Equidistribution and Property $ (\tau)$, (2019), 1–77. doi: 10.1090/jams/930.  Google Scholar

[24]

M. EinsiedlerG. A. Margulis and A. Venkatesh, Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Invent. Math., 177 (2009), 137-212.  doi: 10.1007/s00222-009-0177-7.  Google Scholar

[25]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Springer-Verlag London, 2011. doi: 10.1007/978-0-85729-021-2.  Google Scholar

[26]

R. Ellis and W. Perrizo, Unique ergodicity of flows on homogeneous spaces, Israel J. Math., 29 (1978), 276-284.  doi: 10.1007/BF02762015.  Google Scholar

[27]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.  doi: 10.1215/S0012-7094-03-11932-8.  Google Scholar

[28]

H. Furstenberg, The unique ergodicity of the horocycle flow, in Recent Advances in Topological Dynamics (Proc. Conf., Yale Univ., New Haven, CT, 1972), Lecture Notes in Math., 318, Springer, Berlin, 1973, 95–115.  Google Scholar

[29]

A. Gorodnik, Open problems in dynamics and related fields, J. Mod. Dyn., 1 (2007), 1-35.  doi: 10.3934/jmd.2007.1.1.  Google Scholar

[30]

A. GorodnikF. Maucourant and H. Oh, Manin's and Peyre's conjectures on rational points and adelic mixing, Ann. Sci. Éc. Norm. Supér. (4), 41 (2008), 383-435.  doi: 10.24033/asens.2071.  Google Scholar

[31]

B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2), 175 (2012), 465-540.  doi: 10.4007/annals.2012.175.2.2.  Google Scholar

[32] H. Halberstam and H.-E. Richert, Sieve Methods, London Mathematical Society Monographs, 4, Academic Press, London-New York, 1974.   Google Scholar
[33]

P. Haukkanen, On a gcd-sum function, Aequationes Math., 76 (2008), 168-178.  doi: 10.1007/s00010-007-2923-5.  Google Scholar

[34]

G. A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J., 2 (1936), 530-542.  doi: 10.1215/S0012-7094-36-00246-6.  Google Scholar

[35]

H. Iwaniec and E. Kowalski, Analytic Number Theory, Colloquium Publications, 53, Amer. Math. Society, Providence, RI, 2004. doi: 10.1090/coll/053.  Google Scholar

[36]

A. Katok and R. J. Spatzier, First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Publications mathématiques de l'IHÉS, 79 (1994), 131–156.  Google Scholar

[37]

D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in Sinaĭ's Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2,171, Adv. Math. Soc., Providence, RI, 1996,141–172. doi: 10.1090/trans2/171/11.  Google Scholar

[38]

D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2), 148 (1998), 339-360.  doi: 10.2307/120997.  Google Scholar

[39]

D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.  doi: 10.1007/s002220050350.  Google Scholar

[40]

D. Y. Kleinbock and G. A. Margulis, On effective equidistribution of expanding translates of certain orbits in the space of lattices, in Number Theory, Analysis and Geometry, Springer, Boston, 2012,385–396. doi: 10.1007/978-1-4614-1260-1_18.  Google Scholar

[41]

A. W. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics, 140, Birkhäuser Boston, Inc., 1996. doi: 10.1007/978-1-4757-2453-0.  Google Scholar

[42]

M. Lee and H. Oh, Effective equidistribution of closed horocycles for geometrically finite surfaces, preprint, arXiv: 1202.0848, (2012). Google Scholar

[43]

E. Lindenstrauss, G. A. Margulis, A. Mohammadi and N. Shah, Quantitative behavior of unipotent flows and an effective avoidance principle, preprint, arXiv: 1904.00290, (2019). Google Scholar

[44]

J. Liu and P. Sarnak, The Möbius function and distal flows, Duke Math. J., 164 (2015), 1353-1399.  doi: 10.1215/00127094-2916213.  Google Scholar

[45]

G. A. Margulis, On some Aspects of the Theory of Anosov Systems, Ph.D. thesis, Lomonosov Moscow State University (1970) (in Russian); English transl.: Springer Monographs in Mathematics, Springer, Berlin, 2004. doi: 10.1007/978-3-662-09070-1.  Google Scholar

[46]

G. A. Margulis, On the action of unipotent groups in a lattice space, Mat. Sb. (N.S.), 86 (1971), 552-556.   Google Scholar

[47]

G. A. Margulis, On the action of unipotent groups in the space of lattices, in Lie Groups and Their Representations (Proc. Summer School, Bolyai, János Math. Soc., Budapest, 1971), Wiley, New York, 1975,365–370.  Google Scholar

[48]

G. A. Margulis, Formes quadratriques indéfinies et flots unipotents sur les espaces homogènes, C. R. Acad. Sci. Paris Sér. I Math., 304 (1987), 249-253.   Google Scholar

[49]

G. A. Margulis, Discrete subgroups and ergodic theory, in Number Theory, Trace Formulas and Discrete Groups (Symposium in honor of Atle Selberg, Oslo, 1987), Academic Press, Boston, 1989, 377–398.  Google Scholar

[50]

G. A. Margulis and G. M. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., 116 (1994), 347-392.  doi: 10.1007/BF01231565.  Google Scholar

[51]

A. Nevo and P. Sarnak, Prime and almost prime integral points on principal homogeneous spaces, Acta Math., 205 (2010), 361-402.  doi: 10.1007/s11511-010-0057-4.  Google Scholar

[52]

H. Oh, Tempered subgroups and representations with minimal decay of matrix coefficients, Bull. Math. Soc. France, 126 (1998), 355-380.  doi: 10.24033/bsmf.2329.  Google Scholar

[53]

H. Oh, Uniform pointwise bounds for decay of matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., 113 (2002), 133-192.  doi: 10.1215/S0012-7094-02-11314-3.  Google Scholar

[54]

R. Peckner, Möbius disjointness for homogeneous dynamics, Duke Math. J., 167 (2018), 2745-2792.  doi: 10.1215/00127094-2018-0026.  Google Scholar

[55]

S. S. Pillai, On an arithmetic function, J. of the Annamalai Univ., 2 (1933), 243-248.   Google Scholar

[56]

M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[57]

M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. (2), 134 (1991), 545-607.  doi: 10.2307/2944357.  Google Scholar

[58]

M. Ratner, Invariant measures and orbit closures for unipotent actions on homogeneous spaces, Geom. Funct. Anal., 4 (1994), 236-257.  doi: 10.1007/BF01895839.  Google Scholar

[59]

E. J. Remez, Sur une propriété des polynômes de Tchebyscheff, Comm. Inst. Sci. Kharkow, 13 (1936), 93-95.   Google Scholar

[60]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math., 34 (1981), 719-739.  doi: 10.1002/cpa.3160340602.  Google Scholar

[61]

P. Sarnak and A. Ubis, The horocycle flow at prime times, J. Math. Pures Appl. (6), 103 (2015), 575-618.  doi: 10.1016/j.matpur.2014.07.004.  Google Scholar

[62]

N. A. Shah, Limit distributions of polynomial trajectories on homogeneous spaces, Duke Math. J., 75 (1994), 711-732.  doi: 10.1215/S0012-7094-94-07521-2.  Google Scholar

[63]

A. Strömbergsson, On the uniform equidistribution of long closed horocycles, Duke Math. J., 123 (2004), 507-547.  doi: 10.1215/S0012-7094-04-12334-6.  Google Scholar

[64]

A. Strömbergsson, On the deviation of ergodic averages for horocycle flows, J. Mod. Dyn., 7 (2013), 291-328.  doi: 10.3934/jmd.2013.7.291.  Google Scholar

[65]

A. Strömbergsson, An effective Ratner equidistribution result for ${\rm SL}(2, \mathbb{R})\ltimes\mathbb{R}^2$, Duke Math. J., 164 (2015), 843-902.  doi: 10.1215/00127094-2885873.  Google Scholar

[66]

Y. Tanigawa and W. Zhai, On the gcd-sum function, J. Integer Seq., 11 (2008), Article 08.2.3, 11pp.  Google Scholar

[67]

L. Tóth, A generalization of Pillai's arithmetical function involving regular convolutions, Acta Math. Inform. Univ. Ostraviensis, 6 (1998), 203-217.   Google Scholar

[68]

L. Tóth, A survey of gcd-sum functions, J. Integer Seq., 13 (2010), Article 10.8.1, 23pp.  Google Scholar

[69]

L. Tóth, Another generalization of the gcd-sum function, Arab. J. Math. (Springer), 2 (2013), 313-320.  doi: 10.1007/s40065-013-0077-y.  Google Scholar

[70]

W. A. Veech, Unique ergodicity of horospherical flows, Amer. J. Math., 99 (1977), 827-859.  doi: 10.2307/2373868.  Google Scholar

[71]

A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math. (2), 172 (2010), 989-1094.  doi: 10.4007/annals.2010.172.989.  Google Scholar

Figure 1.  The symmetric difference between $ B_T $ and $ B_T - (H,\ldots,H) $
Figure 2.  The measure of the set where $ |{\bf s_1-s_2| }<\epsilon $ has measure bounded by $ H^d\epsilon^d $ in $ B_H\times B_H $ (shown here for one dimensional $ U $)
Figure 3.  The area shaded in solid gray indicates the region over which we are integrating in the definition of $ S_{\rm approx} $, whereas the area shaded with diagonal lines represents the region over which we are integrating in our estimate of $ S_{\rm approx} $ given in (43). The difference between the two integrals can be bounded by the number of $ \delta $-cubes intersecting the boundary of $ B_T $ multiplied by the supremum of $ f $
Figure 4.  In $ S_K(A) $ we are summing over the integer points in $ \tilde B_T $ such that $ K|k_1\cdots k_2 $ (filled in black). We may do this by summing over shifted grids based at each of the points in the first box $ \tilde B_K $ (filled in gray). However, this introduces an error determined by $ \mathscr{S}_{{\infty},{0}}(f) $ and the number of points in each of these shifted grids falling outside $ B_T $ (filled in white). The number of such points can be bounded by $ T^{d-1}K^{1-d} $, as we have seen before
[1]

Kathryn Dabbs, Michael Kelly, Han Li. Effective equidistribution of translates of maximal horospherical measures in the space of lattices. Journal of Modern Dynamics, 2016, 10: 229-254. doi: 10.3934/jmd.2016.10.229

[2]

Wenyu Pan. Effective equidistribution of circles in the limit sets of Kleinian groups. Journal of Modern Dynamics, 2017, 11: 189-217. doi: 10.3934/jmd.2017009

[3]

Cheng Zheng. Sparse equidistribution of unipotent orbits in finite-volume quotients of $\text{PSL}(2,\mathbb R)$. Journal of Modern Dynamics, 2016, 10: 1-21. doi: 10.3934/jmd.2016.10.1

[4]

Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004

[5]

Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008

[6]

Salvatore Cosentino, Livio Flaminio. Equidistribution for higher-rank Abelian actions on Heisenberg nilmanifolds. Journal of Modern Dynamics, 2015, 9: 305-353. doi: 10.3934/jmd.2015.9.305

[7]

Giovanni Forni, Corinna Ulcigrai. Time-changes of horocycle flows. Journal of Modern Dynamics, 2012, 6 (2) : 251-273. doi: 10.3934/jmd.2012.6.251

[8]

Andreas Strömbergsson. On the deviation of ergodic averages for horocycle flows. Journal of Modern Dynamics, 2013, 7 (2) : 291-328. doi: 10.3934/jmd.2013.7.291

[9]

Samuel C. Edwards. On the rate of equidistribution of expanding horospheres in finite-volume quotients of SL(2, ${\mathbb{C}}$). Journal of Modern Dynamics, 2017, 11: 155-188. doi: 10.3934/jmd.2017008

[10]

Rafael Tiedra De Aldecoa. Spectral analysis of time changes of horocycle flows. Journal of Modern Dynamics, 2012, 6 (2) : 275-285. doi: 10.3934/jmd.2012.6.275

[11]

Wenyu Pan. Joining measures for horocycle flows on abelian covers. Journal of Modern Dynamics, 2018, 12: 17-54. doi: 10.3934/jmd.2018003

[12]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[13]

François Ledrappier, Omri Sarig. Unique ergodicity for non-uniquely ergodic horocycle flows. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 411-433. doi: 10.3934/dcds.2006.16.411

[14]

Matilde Martínez, Shigenori Matsumoto, Alberto Verjovsky. Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem. Journal of Modern Dynamics, 2016, 10: 113-134. doi: 10.3934/jmd.2016.10.113

[15]

Livio Flaminio, Giovanni Forni. Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows. Electronic Research Announcements, 2019, 26: 16-23. doi: 10.3934/era.2019.26.002

[16]

Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4619-4635. doi: 10.3934/dcds.2016001

[17]

Hartmut Schwetlick, Daniel C. Sutton, Johannes Zimmer. Effective Hamiltonian dynamics via the Maupertuis principle. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-16. doi: 10.3934/dcdss.2020078

[18]

Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43

[19]

Livio Flaminio, Giovanni Forni, Federico Rodriguez Hertz. Invariant distributions for homogeneous flows and affine transformations. Journal of Modern Dynamics, 2016, 10: 33-79. doi: 10.3934/jmd.2016.10.33

[20]

P.E. Kloeden. Pitchfork and transcritical bifurcations in systems with homogeneous nonlinearities and an almost periodic time coefficient. Communications on Pure & Applied Analysis, 2004, 3 (2) : 161-173. doi: 10.3934/cpaa.2004.3.161

2018 Impact Factor: 0.295

Article outline

Figures and Tables

[Back to Top]