2019, 15: 329-343. doi: 10.3934/jmd.2019023

Uniform distribution of saddle connection lengths (with an appendix by Daniel El-Baz and Bingrong Huang)

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Received  August 2018 Revised  May 13, 2019 Published  December 2019

For any $ \mathrm{SL}(2, \mathbb{R}) $ invariant and ergodic probability measure on any stratum of flat surfaces, almost every flat surface has the property that its non-decreasing sequence of saddle connection lengths is uniformly distributed mod one.

Citation: Jon Chaika, Donald Robertson. Uniform distribution of saddle connection lengths (with an appendix by Daniel El-Baz and Bingrong Huang). Journal of Modern Dynamics, 2019, 15: 329-343. doi: 10.3934/jmd.2019023
References:
[1]

J. S. Athreya and J. Chaika, The distribution of gaps for saddle connection directions, Geom. Funct. Anal., 22 (2012), 1491-1516.  doi: 10.1007/s00039-012-0164-9.  Google Scholar

[2]

J. S. Athreya, J. Chaika and S. Lelièvre, The gap distribution of slopes on the golden L, in Recent Trends in Ergodic Theory and Dynamical Systems, Contemp. Math., 631, Amer. Math. Soc., Providence, RI, 2015, 47-62. doi: 10.1090/conm/631/12595.  Google Scholar

[3]

J. S. AthreyaY. Cheung and H. Masur, Siegel-Veech transforms are in L2. With an appendix by Jayadev S. Athreya and Rene Rühr, J. Mod. Dyn., 14 (2019), 1-19.  doi: 10.3934/jmd.2019022.  Google Scholar

[4]

B. Dozier, Convergence of Siegel-Veech constants, Geom. Dedicata, 198 (2019), 131-142.  doi: 10.1007/s10711-018-0332-7.  Google Scholar

[5]

B. Dozier, Equidistribution of saddle connections on translation surfaces, J. Mod. Dyn., 14 (2019), 87-120.  doi: 10.3934/jmd.2019004.  Google Scholar

[6]

A. Eskin and H. Masur, Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, 21 (2001), 443-478.  doi: 10.1017/S0143385701001225.  Google Scholar

[7]

A. Eskin and M. Mirzakhani, Counting closed geodesics in moduli space, J. Mod. Dyn., 5 (2011), 71-105.  doi: 10.3934/jmd.2011.5.71.  Google Scholar

[8]

A. EskinM. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the $\mathrm{SL}(2,\mathbb{R})$ action on moduli space, Ann. of Math. (2), 182 (2015), 673-721.  doi: 10.4007/annals.2015.182.2.7.  Google Scholar

[9]

G. Forni, Limits of geodesic push-forwards of horocycle invariant measures, preprint, 2017. Google Scholar

[10]

M. N. Huxley and W. G. Nowak, Primitive lattice points in convex planar domains, Acta Arith., 76 (1996), 271-283.  doi: 10.4064/aa-76-3-271-283.  Google Scholar

[11]

A. W. Knapp, Representation Theory of Semisimple Groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001.  Google Scholar

[12]

H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2), 115 (1982), 169-200.  doi: 10.2307/1971341.  Google Scholar

[13]

H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, in Holomorphic Functions and Moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988,215-228. doi: 10.1007/978-1-4613-9602-4_20.  Google Scholar

[14]

H. Masur, The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems, 10 (1990), 151-176.  doi: 10.1017/S0143385700005459.  Google Scholar

[15]

A. NevoR. Rühr and B. Weiss, Effective counting on translation surfaces, Adv. Math., 360 (2020), 106890.  doi: 10.1016/j.aim.2019.106890.  Google Scholar

[16]

C. Uyanik and G. Work, The distribution of gaps for saddle connections on the octagon, Int. Math. Res. Not. IMRN, (2016), 5569-5602.  doi: 10.1093/imrn/rnv317.  Google Scholar

[17]

W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), (1982), 201-242.  doi: 10.2307/1971391.  Google Scholar

[18]

W. A. Veech, Siegel measures, Ann. of Math. (2), 148 (1998), 895-944.  doi: 10.2307/121033.  Google Scholar

[19]

Y. Vorobets, Periodic geodesics on translation surfaces, preprint, arXiv: math/0307249, 2003. doi: 10.1090/conm/385/07199.  Google Scholar

[20]

Y. Vorobets, Periodic geodesics on generic translation surfaces, in Algebraic and Topological Dynamics, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005,205-258. doi: 10.1090/conm/385/07199.  Google Scholar

show all references

References:
[1]

J. S. Athreya and J. Chaika, The distribution of gaps for saddle connection directions, Geom. Funct. Anal., 22 (2012), 1491-1516.  doi: 10.1007/s00039-012-0164-9.  Google Scholar

[2]

J. S. Athreya, J. Chaika and S. Lelièvre, The gap distribution of slopes on the golden L, in Recent Trends in Ergodic Theory and Dynamical Systems, Contemp. Math., 631, Amer. Math. Soc., Providence, RI, 2015, 47-62. doi: 10.1090/conm/631/12595.  Google Scholar

[3]

J. S. AthreyaY. Cheung and H. Masur, Siegel-Veech transforms are in L2. With an appendix by Jayadev S. Athreya and Rene Rühr, J. Mod. Dyn., 14 (2019), 1-19.  doi: 10.3934/jmd.2019022.  Google Scholar

[4]

B. Dozier, Convergence of Siegel-Veech constants, Geom. Dedicata, 198 (2019), 131-142.  doi: 10.1007/s10711-018-0332-7.  Google Scholar

[5]

B. Dozier, Equidistribution of saddle connections on translation surfaces, J. Mod. Dyn., 14 (2019), 87-120.  doi: 10.3934/jmd.2019004.  Google Scholar

[6]

A. Eskin and H. Masur, Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, 21 (2001), 443-478.  doi: 10.1017/S0143385701001225.  Google Scholar

[7]

A. Eskin and M. Mirzakhani, Counting closed geodesics in moduli space, J. Mod. Dyn., 5 (2011), 71-105.  doi: 10.3934/jmd.2011.5.71.  Google Scholar

[8]

A. EskinM. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the $\mathrm{SL}(2,\mathbb{R})$ action on moduli space, Ann. of Math. (2), 182 (2015), 673-721.  doi: 10.4007/annals.2015.182.2.7.  Google Scholar

[9]

G. Forni, Limits of geodesic push-forwards of horocycle invariant measures, preprint, 2017. Google Scholar

[10]

M. N. Huxley and W. G. Nowak, Primitive lattice points in convex planar domains, Acta Arith., 76 (1996), 271-283.  doi: 10.4064/aa-76-3-271-283.  Google Scholar

[11]

A. W. Knapp, Representation Theory of Semisimple Groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001.  Google Scholar

[12]

H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2), 115 (1982), 169-200.  doi: 10.2307/1971341.  Google Scholar

[13]

H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, in Holomorphic Functions and Moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., 10, Springer, New York, 1988,215-228. doi: 10.1007/978-1-4613-9602-4_20.  Google Scholar

[14]

H. Masur, The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems, 10 (1990), 151-176.  doi: 10.1017/S0143385700005459.  Google Scholar

[15]

A. NevoR. Rühr and B. Weiss, Effective counting on translation surfaces, Adv. Math., 360 (2020), 106890.  doi: 10.1016/j.aim.2019.106890.  Google Scholar

[16]

C. Uyanik and G. Work, The distribution of gaps for saddle connections on the octagon, Int. Math. Res. Not. IMRN, (2016), 5569-5602.  doi: 10.1093/imrn/rnv317.  Google Scholar

[17]

W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), (1982), 201-242.  doi: 10.2307/1971391.  Google Scholar

[18]

W. A. Veech, Siegel measures, Ann. of Math. (2), 148 (1998), 895-944.  doi: 10.2307/121033.  Google Scholar

[19]

Y. Vorobets, Periodic geodesics on translation surfaces, preprint, arXiv: math/0307249, 2003. doi: 10.1090/conm/385/07199.  Google Scholar

[20]

Y. Vorobets, Periodic geodesics on generic translation surfaces, in Algebraic and Topological Dynamics, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005,205-258. doi: 10.1090/conm/385/07199.  Google Scholar

[1]

Lan Wen. A uniform $C^1$ connecting lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257

[2]

Sergey Zelik. Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 781-810. doi: 10.3934/dcdsb.2015.20.781

[3]

Hung-Chu Hsu. Recovering surface profiles of solitary waves on a uniform stream from pressure measurements. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3035-3043. doi: 10.3934/dcds.2014.34.3035

[4]

Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062

[5]

Seung-Yeal Ha, Eunhee Jeong, Robert M. Strain. Uniform $L^1$-stability of the relativistic Boltzmann equation near vacuum. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1141-1161. doi: 10.3934/cpaa.2013.12.1141

[6]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[7]

Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209

[8]

José A. Conejero, Alfredo Peris. Chaotic translation semigroups. Conference Publications, 2007, 2007 (Special) : 269-276. doi: 10.3934/proc.2007.2007.269

[9]

Claude Carlet, Yousuf Alsalami. A new construction of differentially 4-uniform $(n,n-1)$-functions. Advances in Mathematics of Communications, 2015, 9 (4) : 541-565. doi: 10.3934/amc.2015.9.541

[10]

Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068

[11]

Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004

[12]

Kevin Ford. The distribution of totients. Electronic Research Announcements, 1998, 4: 27-34.

[13]

Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715

[14]

King-Yeung Lam, Daniel Munther. Invading the ideal free distribution. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3219-3244. doi: 10.3934/dcdsb.2014.19.3219

[15]

Katrin Gelfert, Christian Wolf. On the distribution of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 949-966. doi: 10.3934/dcds.2010.26.949

[16]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[17]

Lok Ming Lui, Chengfeng Wen, Xianfeng Gu. A conformal approach for surface inpainting. Inverse Problems & Imaging, 2013, 7 (3) : 863-884. doi: 10.3934/ipi.2013.7.863

[18]

Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1

[19]

Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81.

[20]

Erica Clay, Boris Hasselblatt, Enrique Pujals. Desingularization of surface maps. Electronic Research Announcements, 2017, 24: 1-9. doi: 10.3934/era.2017.24.001

2018 Impact Factor: 0.295

Metrics

  • PDF downloads (13)
  • HTML views (30)
  • Cited by (0)

Other articles
by authors

[Back to Top]