2019, 15: 345-423. doi: 10.3934/jmd.2019024

From odometers to circular systems: A global structure theorem

1. 

Department of Mathematics, University of California, Irvine, CA 92697, USA

2. 

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received  November 27, 2017 Revised  May 2019 Published  December 2019

Fund Project: Supported in part by NSF grant DMS-1700143.

The main result of this paper is that two large collections of ergodic measure preserving systems, the Odometer Based and the Circular Systems have the same global structure with respect to joinings that preserve underlying timing factors. The classes are canonically isomorphic by a continuous map that takes synchronous and anti-synchronous factor maps to synchronous and anti-synchronous factor maps, synchronous and anti-synchronous measure-isomorphisms to synchronous and anti-synchronous measure-isomorphisms, weakly mixing extensions to weakly mixing extensions and compact extensions to compact extensions. The first class includes all finite entropy ergodic transformations that have an odometer factor. By results in [6], the second class contains all transformations realizable as diffeomorphisms using the untwisted Anosov–Katok method. An application of the main result will appear in a forthcoming paper [7] that shows that the diffeomorphisms of the torus are inherently unclassifiable up to measure-isomorphism. Other consequences include the existence of measure distal diffeomorphisms of arbitrary countable distal height.

Citation: Matthew Foreman, Benjamin Weiss. From odometers to circular systems: A global structure theorem. Journal of Modern Dynamics, 2019, 15: 345-423. doi: 10.3934/jmd.2019024
References:
[1]

D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obšč., 23 (1970), 3-36.   Google Scholar

[2]

F. Beleznay and M. Foreman, The complexity of the collection of measure-distal transformations, Ergodic Theory Dynam. Systems, 16 (1996), 929-962.  doi: 10.1017/S0143385700010129.  Google Scholar

[3]

T. Downarowicz, The Choquet simplex of invariant measures for minimal flows, Israel J. Math., 74 (1991), 241-256.  doi: 10.1007/BF02775789.  Google Scholar

[4]

J. Feldman, Borel structures and invariants for measurable transformations, Proc. Amer. Math. Soc., 46 (1974), 383-394.  doi: 10.1090/S0002-9939-1974-0355002-5.  Google Scholar

[5]

M. ForemanD. J. Rudolph and B. Weiss, The conjugacy problem in ergodic theory, Ann. of Math. (2), 173 (2011), 1529-1586.  doi: 10.4007/annals.2011.173.3.7.  Google Scholar

[6]

M. Foreman and B. Weiss, A symbolic representation of Anosov-Katok systems, J. Anal. Math., 137 (2019), 603-661.  doi: 10.1007/s11854-019-0010-1.  Google Scholar

[7]

M. Foreman and B. Weiss, Measure preserving diffeomorphisms of the torus are unclassifiable, arXiv: 1705.04414, 2017. Google Scholar

[8]

M. Foreman and B. Weiss, Odometer and circular systems: measure invariant under diffeomorphisms, in preparation. Google Scholar

[9]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981.  Google Scholar

[10]

H. Furstenberg and B. Weiss, A mean ergodic theorem for $(1/N)\sum^N_{n = 1}f(T^nx)g(T^{n^2}x)$, in Convergence in Ergodic Theory and Probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996,193–227.  Google Scholar

[11]

E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/surv/101.  Google Scholar

[12]

P. R. Halmos, Lectures on Ergodic Theory, Chelsea Publishing Co., New York, 1960.  Google Scholar

[13]

P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. Ⅱ, Ann. of Math. (2), 43 (1942), 332-350.  doi: 10.2307/1968872.  Google Scholar

[14]

G. Hjorth, On invariants for measure preserving transformations, Fund. Math., 169 (2001), 51-84.  doi: 10.4064/fm169-1-2.  Google Scholar

[15]

A. Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, University Lecture Series, 30, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/ulect/030.  Google Scholar

[16]

K. Petersen, Ergodic Theory, Corrected reprint of the 1983 original, Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge, 1989.  Google Scholar

[17]

D. J. Rudolph, Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990.  Google Scholar

[18]

P. C. Shields, The Ergodic Theory of Discrete Sample Paths, Graduate Studies in Mathematics, 13, American Mathematical Society, Providence, RI, 1996. doi: 10.1090/gsm/013.  Google Scholar

[19]

W. A. Veech, A criterion for a process to be prime, Monatsh. Math., 94 (1982), 335-341.  doi: 10.1007/BF01667386.  Google Scholar

[20]

J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik, Ann. of Math. (2), 33 (1932), 587-642.  doi: 10.2307/1968537.  Google Scholar

[21]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[22]

B. Weiss, Single Orbit Dynamics, CBMS Regional Conference Series in Mathematics, 95, American Mathematical Society, Providence, RI, 2000.  Google Scholar

[23]

R. J. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math., 20 (1976), 555-588.  doi: 10.1215/ijm/1256049648.  Google Scholar

show all references

References:
[1]

D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obšč., 23 (1970), 3-36.   Google Scholar

[2]

F. Beleznay and M. Foreman, The complexity of the collection of measure-distal transformations, Ergodic Theory Dynam. Systems, 16 (1996), 929-962.  doi: 10.1017/S0143385700010129.  Google Scholar

[3]

T. Downarowicz, The Choquet simplex of invariant measures for minimal flows, Israel J. Math., 74 (1991), 241-256.  doi: 10.1007/BF02775789.  Google Scholar

[4]

J. Feldman, Borel structures and invariants for measurable transformations, Proc. Amer. Math. Soc., 46 (1974), 383-394.  doi: 10.1090/S0002-9939-1974-0355002-5.  Google Scholar

[5]

M. ForemanD. J. Rudolph and B. Weiss, The conjugacy problem in ergodic theory, Ann. of Math. (2), 173 (2011), 1529-1586.  doi: 10.4007/annals.2011.173.3.7.  Google Scholar

[6]

M. Foreman and B. Weiss, A symbolic representation of Anosov-Katok systems, J. Anal. Math., 137 (2019), 603-661.  doi: 10.1007/s11854-019-0010-1.  Google Scholar

[7]

M. Foreman and B. Weiss, Measure preserving diffeomorphisms of the torus are unclassifiable, arXiv: 1705.04414, 2017. Google Scholar

[8]

M. Foreman and B. Weiss, Odometer and circular systems: measure invariant under diffeomorphisms, in preparation. Google Scholar

[9]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981.  Google Scholar

[10]

H. Furstenberg and B. Weiss, A mean ergodic theorem for $(1/N)\sum^N_{n = 1}f(T^nx)g(T^{n^2}x)$, in Convergence in Ergodic Theory and Probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996,193–227.  Google Scholar

[11]

E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/surv/101.  Google Scholar

[12]

P. R. Halmos, Lectures on Ergodic Theory, Chelsea Publishing Co., New York, 1960.  Google Scholar

[13]

P. R. Halmos and J. von Neumann, Operator methods in classical mechanics. Ⅱ, Ann. of Math. (2), 43 (1942), 332-350.  doi: 10.2307/1968872.  Google Scholar

[14]

G. Hjorth, On invariants for measure preserving transformations, Fund. Math., 169 (2001), 51-84.  doi: 10.4064/fm169-1-2.  Google Scholar

[15]

A. Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, University Lecture Series, 30, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/ulect/030.  Google Scholar

[16]

K. Petersen, Ergodic Theory, Corrected reprint of the 1983 original, Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge, 1989.  Google Scholar

[17]

D. J. Rudolph, Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990.  Google Scholar

[18]

P. C. Shields, The Ergodic Theory of Discrete Sample Paths, Graduate Studies in Mathematics, 13, American Mathematical Society, Providence, RI, 1996. doi: 10.1090/gsm/013.  Google Scholar

[19]

W. A. Veech, A criterion for a process to be prime, Monatsh. Math., 94 (1982), 335-341.  doi: 10.1007/BF01667386.  Google Scholar

[20]

J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik, Ann. of Math. (2), 33 (1932), 587-642.  doi: 10.2307/1968537.  Google Scholar

[21]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[22]

B. Weiss, Single Orbit Dynamics, CBMS Regional Conference Series in Mathematics, 95, American Mathematical Society, Providence, RI, 2000.  Google Scholar

[23]

R. J. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math., 20 (1976), 555-588.  doi: 10.1215/ijm/1256049648.  Google Scholar

[1]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[2]

Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873

[3]

Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903

[4]

Petr Kůrka. Iterative systems of real Möbius transformations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 567-574. doi: 10.3934/dcds.2009.25.567

[5]

Jacek Brzykcy, Krzysztof Frączek. Disjointness of interval exchange transformations from systems of probabilistic origin. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 53-73. doi: 10.3934/dcds.2010.27.53

[6]

Silvére Gangloff, Alonso Herrera, Cristobal Rojas, Mathieu Sablik. Computability of topological entropy: From general systems to transformations on Cantor sets and the interval. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4259-4286. doi: 10.3934/dcds.2020180

[7]

Sarah Bailey Frick. Limited scope adic transformations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 269-285. doi: 10.3934/dcdss.2009.2.269

[8]

José F. Cariñena, Fernando Falceto, Manuel F. Rañada. Canonoid transformations and master symmetries. Journal of Geometric Mechanics, 2013, 5 (2) : 151-166. doi: 10.3934/jgm.2013.5.151

[9]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[10]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

[11]

Zhiming Li, Yujun Zhu. Entropies of commuting transformations on Hilbert spaces. Discrete & Continuous Dynamical Systems - A, 2020, 40 (10) : 5795-5814. doi: 10.3934/dcds.2020246

[12]

Vladimir V. Kisil. Mobius transformations and monogenic functional calculus. Electronic Research Announcements, 1996, 2: 26-33.

[13]

Benjamin Wincure, Alejandro D. Rey. Growth regimes in phase ordering transformations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 623-648. doi: 10.3934/dcdsb.2007.8.623

[14]

Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251

[15]

Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020

[16]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[17]

Svetlana Katok, Ilie Ugarcovici. Theory of $(a,b)$-continued fraction transformations and applications. Electronic Research Announcements, 2010, 17: 20-33. doi: 10.3934/era.2010.17.20

[18]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[19]

Roland Zweimüller. Asymptotic orbit complexity of infinite measure preserving transformations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 353-366. doi: 10.3934/dcds.2006.15.353

[20]

V. M. Gundlach, Yu. Kifer. Expansiveness, specification, and equilibrium states for random bundle transformations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 89-120. doi: 10.3934/dcds.2000.6.89

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (90)
  • HTML views (185)
  • Cited by (0)

Other articles
by authors

[Back to Top]