2019, 15: 427-435. doi: 10.3934/jmd.2019026

The work of Mike Hochman on multidimensional symbolic dynamics and Borel dynamics

Department of Mathematics, University of Maryland, College Park, MD 20742-4015, USA

Received  October 24, 2018 Published  December 2019

Fund Project: This article is based on the talk I gave on the occasion of Mike Hochman's being awarded the Brin Prize. I am grateful to Nishant Chandgotia, Emmanuel Jeandel, Doug Lind, and Anush Tserunyan for very helpful feedback.

We review the impact of Mike Hochman's work on mutlidimensional symbolic dynamics and Borel dynamics.

Citation: Mike Boyle. The work of Mike Hochman on multidimensional symbolic dynamics and Borel dynamics. Journal of Modern Dynamics, 2019, 15: 427-435. doi: 10.3934/jmd.2019026
References:
[1]

R. L. Adler and B. Marcus, Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc., 20 (1979). doi: 10.1090/memo/0219.  Google Scholar

[2]

N. AubrunS. Barbieri and M. Sablik, A notion of effectiveness for subshifts on finitely generated groups, Theoret. Comput. Sci., 661 (2017), 35-55.  doi: 10.1016/j.tcs.2016.11.033.  Google Scholar

[3]

N. Aubrun and M. Sablik, Simulation of effective subshifts by two-dimensional subshifts of finite type, Acta Appl. Math., 126 (2013), 35-63.  doi: 10.1007/s10440-013-9808-5.  Google Scholar

[4]

R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1989.  Google Scholar

[5]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[6]

M. Boyle and J. Buzzi, The almost Borel structure of surface diffeomorphisms, Markov shifts and their factors, J. Eur. Math. Soc. (JEMS), 19 (2017), 2739-2782.  doi: 10.4171/JEMS/727.  Google Scholar

[7]

M. BoyleJ. Buzzi and R. Gómez, Almost isomorphism for countable state Markov shifts, J. Reine Angew. Math., 592 (2006), 23-47.  doi: 10.1515/CRELLE.2006.021.  Google Scholar

[8]

D. Burguet, Topological and almost Borel universality for systems with the weak specification property, Ergodic Theory Dynam. Systems, (first published online February 2019). doi: 10.1017/etds.2019.7.  Google Scholar

[9]

D. Burguet, Topological and almost Borel universality for systems with the weak specification property, preprint, arXiv: 1901.00666. Google Scholar

[10]

J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math., 100 (1997), 125-161.  doi: 10.1007/BF02773637.  Google Scholar

[11]

N. Chandgotia and T. Meyerovitch, Borel subsystems and ergodic universality for compact $\mathbb Z^d$-systems via specification and beyond, preprint, arXiv: 1903.05716. Google Scholar

[12]

C. T. ConleyA. S. Kechris and B. D. Miller, Stationary probability measures and topological realizations, Israel J. Math., 198 (2013), 333-345.  doi: 10.1007/s11856-013-0025-8.  Google Scholar

[13]

M. Delacourt and B. Hellouin de Menibus, Characterisation of limit measures of higher-dimensional cellular automata, Theory Comput. Syst., 61 (2017), 1178-1213.  doi: 10.1007/s00224-017-9753-1.  Google Scholar

[14]

R. DoughertyS. Jackson and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc., 341 (1994), 193-225.  doi: 10.1090/S0002-9947-1994-1149121-0.  Google Scholar

[15]

B. Durand and A. Romashchenko, On the expressive power of quasiperiodic SFT, 42nd International Symposium on Mathematical Foundations of Computer Science, 2017.  Google Scholar

[16]

B. Durand, A. Romashchenko and A. Shen, Effective closed subshifts in 1D can be implemented in 2D, in Fields of Logic and Computation, Lecture Notes in Computer Science, 6300, Springer, Berlin, 2010,208–226. doi: 10.1007/978-3-642-15025-8_12.  Google Scholar

[17]

P. Guillon and C. Zinoviadis, Densities and entropies in cellular automata, in How the World Computes, Lecture Notes in Computer Science, 7318, Springer, Heidelberg, 2012,253–263. doi: 10.1007/978-3-642-30870-3_26.  Google Scholar

[18]

B. Hellouin de Menibus and M. Sablik, Characterization of sets of limit measures of a cellular automaton iterated on a random configuration, Ergodic Theory Dynam. Systems, 38 (2018), 601-650.  doi: 10.1017/etds.2016.46.  Google Scholar

[19]

M. Hochman, On the dynamics and recursive properties of multidimensional symbolic systems, Invent. Math., 176 (2009), 131-167.  doi: 10.1007/s00222-008-0161-7.  Google Scholar

[20]

M. Hochman, Isomorphism and embedding of Borel systems on full sets, Acta Appl. Math., 126 (2013), 187-201.  doi: 10.1007/s10440-013-9813-8.  Google Scholar

[21]

M. Hochman, Every Borel automorphism without finite invariant measures admits a two-set generator, J. Eur. Math. Soc. (JEMS), 21 (2019), 271-317.  doi: 10.4171/JEMS/836.  Google Scholar

[22]

M. Hochman, Multidimensional shifts of finite type and sofic shifts, in Combinatorics, Words and Symbolic Dynamics, Encyclopedia Math. Appl., 159, Cambridge Univ. Press, Cambridge, 2016, 296–358.  Google Scholar

[23]

M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Ann. of Math. (2), 171 (2010), 2011–2038. doi: 10.4007/annals.2010.171.2011.  Google Scholar

[24]

S. JacksonA. S. Kechris and A. Louveau, Countable Borel equivalence relations, J. Math. Log., 2 (2002), 1-80.  doi: 10.1142/S0219061302000138.  Google Scholar

[25]

E. Jeandel, Computability in symbolic dynamics, in Pursuit of the Universal, Lecture Notes in Computer Science, 9709, Springer, 2016,124–131. doi: 10.1007/978-3-319-40189-8_13.  Google Scholar

[26]

E. Jeandel and P. Vanier, Characterizations of periods of multi-dimensional shifts, Ergodic Theory Dynam. Systems, 35 (2015), 431-460.  doi: 10.1017/etds.2013.60.  Google Scholar

[27]

J. Kari, Rice's theorem for the limit sets of cellular automata, Theoret. Comput. Sci., 127 (1994), 229-254.  doi: 10.1016/0304-3975(94)90041-8.  Google Scholar

[28]

J. Kari, Cellular automata, tilings and (un)computability, in Combinatorics, Words and Symbolic Dynamics, Encyclopedia Math. Appl., 159, Cambridge Univ. Press, Cambridge, 2016, 241–295.  Google Scholar

[29]

P. W. Kasteleyn, The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice, Physica, 27 (1961), 1209-1225.  doi: 10.1016/0031-8914(61)90063-5.  Google Scholar

[30]

W. Krieger, On entropy and generators of measure-preserving transformations, Trans. Amer. Math. Soc., 149 (1970), 453-464.  doi: 10.1090/S0002-9947-1970-0259068-3.  Google Scholar

[31]

E. H. Lieb, Residual entropy of square ice, Phys. Rev., 162, 1967. doi: 10.1103/PhysRev.162.162.  Google Scholar

[32]

D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems, 4 (1984), 283-300.  doi: 10.1017/S0143385700002443.  Google Scholar

[33]

D. Lind, Multi-dimensional symbolic dynamics, in Symbolic Dynamics and Its Applications, Proc. Sympos. Appl. Math., 60, Amer. Math. Soc., Providence, RI, 2004, 61–79. doi: 10.1090/psapm/060/2078846.  Google Scholar

[34]

K. McGoff and R. Pavlov, Random $\Bbb{Z}^d$-shifts of finite type, J. Mod. Dyn., 10 (2016), 287-330.  doi: 10.3934/jmd.2016.10.287.  Google Scholar

[35]

T. Meyerovitch, Growth-type invariants for $\Bbb Z^d$ subshifts of finite type and arithmetical classes of real numbers, Invent. Math., 184 (2011), 567-589.  doi: 10.1007/s00222-010-0296-1.  Google Scholar

[36]

S. Mozes, Tilings, substitution systems and dynamical systems generated by them, J. Analyse Math., 53 (1989), 139-186.  doi: 10.1007/BF02793412.  Google Scholar

[37]

R. Pavlov and M. Schraudner, Entropies realizable by block gluing $\Bbb{Z}^d$ shifts of finite type, J. Anal. Math., 126 (2015), 113-174.  doi: 10.1007/s11854-015-0014-4.  Google Scholar

[38]

A. Quas and T. Soo, Ergodic universality of some topological dynamical systems, Trans. Amer. Math. Soc., 368 (2016), 4137–4170. doi: 10.1090/tran/6489.  Google Scholar

[39]

R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math., 12 (1971), 177-209.  doi: 10.1007/BF01418780.  Google Scholar

[40]

S. Shelah and B. Weiss, Measurable recurrence and quasi-invariant measures, Israel J. Math., 43 (1982), 154-160.  doi: 10.1007/BF02761726.  Google Scholar

[41]

S. G. Simpson, Medvedev degrees of two-dimensional subshifts of finite type, Ergodic Theory Dynam. Systems, 34 (2014), 679-688.  doi: 10.1017/etds.2012.152.  Google Scholar

[42]

A. Tserunyan, Finite generators for countable group actions in the Borel and Baire category settings, Adv. Math., 269 (2015), 585-646.  doi: 10.1016/j.aim.2014.10.013.  Google Scholar

[43]

B. Weiss, Measurable dynamics, in Conference in Modern Analysis and Probability, Contemp. Math., 26, Amer. Math. Soc., Providence, RI, 1984,395–421. doi: 10.1090/conm/026/737417.  Google Scholar

[44]

B. Weiss, Countable generators in dynamics–-universal minimal models, in Measure and Measurable Dynamics, Contemp. Math., 94, Amer. Math. Soc., Providence, RI, 1989,321–326. doi: 10.1090/conm/094/1013000.  Google Scholar

[45]

C. Zinoviadis, Hierarchy and expansiveness in 2D subshifts of finite type, in Language and Automata Theory and Applications, Lecture Notes in Computer Science, 8977, Springer, Cham, 2015,365–377. doi: 10.1007/978-3-319-15579-1_28.  Google Scholar

show all references

References:
[1]

R. L. Adler and B. Marcus, Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc., 20 (1979). doi: 10.1090/memo/0219.  Google Scholar

[2]

N. AubrunS. Barbieri and M. Sablik, A notion of effectiveness for subshifts on finitely generated groups, Theoret. Comput. Sci., 661 (2017), 35-55.  doi: 10.1016/j.tcs.2016.11.033.  Google Scholar

[3]

N. Aubrun and M. Sablik, Simulation of effective subshifts by two-dimensional subshifts of finite type, Acta Appl. Math., 126 (2013), 35-63.  doi: 10.1007/s10440-013-9808-5.  Google Scholar

[4]

R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1989.  Google Scholar

[5]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[6]

M. Boyle and J. Buzzi, The almost Borel structure of surface diffeomorphisms, Markov shifts and their factors, J. Eur. Math. Soc. (JEMS), 19 (2017), 2739-2782.  doi: 10.4171/JEMS/727.  Google Scholar

[7]

M. BoyleJ. Buzzi and R. Gómez, Almost isomorphism for countable state Markov shifts, J. Reine Angew. Math., 592 (2006), 23-47.  doi: 10.1515/CRELLE.2006.021.  Google Scholar

[8]

D. Burguet, Topological and almost Borel universality for systems with the weak specification property, Ergodic Theory Dynam. Systems, (first published online February 2019). doi: 10.1017/etds.2019.7.  Google Scholar

[9]

D. Burguet, Topological and almost Borel universality for systems with the weak specification property, preprint, arXiv: 1901.00666. Google Scholar

[10]

J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math., 100 (1997), 125-161.  doi: 10.1007/BF02773637.  Google Scholar

[11]

N. Chandgotia and T. Meyerovitch, Borel subsystems and ergodic universality for compact $\mathbb Z^d$-systems via specification and beyond, preprint, arXiv: 1903.05716. Google Scholar

[12]

C. T. ConleyA. S. Kechris and B. D. Miller, Stationary probability measures and topological realizations, Israel J. Math., 198 (2013), 333-345.  doi: 10.1007/s11856-013-0025-8.  Google Scholar

[13]

M. Delacourt and B. Hellouin de Menibus, Characterisation of limit measures of higher-dimensional cellular automata, Theory Comput. Syst., 61 (2017), 1178-1213.  doi: 10.1007/s00224-017-9753-1.  Google Scholar

[14]

R. DoughertyS. Jackson and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc., 341 (1994), 193-225.  doi: 10.1090/S0002-9947-1994-1149121-0.  Google Scholar

[15]

B. Durand and A. Romashchenko, On the expressive power of quasiperiodic SFT, 42nd International Symposium on Mathematical Foundations of Computer Science, 2017.  Google Scholar

[16]

B. Durand, A. Romashchenko and A. Shen, Effective closed subshifts in 1D can be implemented in 2D, in Fields of Logic and Computation, Lecture Notes in Computer Science, 6300, Springer, Berlin, 2010,208–226. doi: 10.1007/978-3-642-15025-8_12.  Google Scholar

[17]

P. Guillon and C. Zinoviadis, Densities and entropies in cellular automata, in How the World Computes, Lecture Notes in Computer Science, 7318, Springer, Heidelberg, 2012,253–263. doi: 10.1007/978-3-642-30870-3_26.  Google Scholar

[18]

B. Hellouin de Menibus and M. Sablik, Characterization of sets of limit measures of a cellular automaton iterated on a random configuration, Ergodic Theory Dynam. Systems, 38 (2018), 601-650.  doi: 10.1017/etds.2016.46.  Google Scholar

[19]

M. Hochman, On the dynamics and recursive properties of multidimensional symbolic systems, Invent. Math., 176 (2009), 131-167.  doi: 10.1007/s00222-008-0161-7.  Google Scholar

[20]

M. Hochman, Isomorphism and embedding of Borel systems on full sets, Acta Appl. Math., 126 (2013), 187-201.  doi: 10.1007/s10440-013-9813-8.  Google Scholar

[21]

M. Hochman, Every Borel automorphism without finite invariant measures admits a two-set generator, J. Eur. Math. Soc. (JEMS), 21 (2019), 271-317.  doi: 10.4171/JEMS/836.  Google Scholar

[22]

M. Hochman, Multidimensional shifts of finite type and sofic shifts, in Combinatorics, Words and Symbolic Dynamics, Encyclopedia Math. Appl., 159, Cambridge Univ. Press, Cambridge, 2016, 296–358.  Google Scholar

[23]

M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Ann. of Math. (2), 171 (2010), 2011–2038. doi: 10.4007/annals.2010.171.2011.  Google Scholar

[24]

S. JacksonA. S. Kechris and A. Louveau, Countable Borel equivalence relations, J. Math. Log., 2 (2002), 1-80.  doi: 10.1142/S0219061302000138.  Google Scholar

[25]

E. Jeandel, Computability in symbolic dynamics, in Pursuit of the Universal, Lecture Notes in Computer Science, 9709, Springer, 2016,124–131. doi: 10.1007/978-3-319-40189-8_13.  Google Scholar

[26]

E. Jeandel and P. Vanier, Characterizations of periods of multi-dimensional shifts, Ergodic Theory Dynam. Systems, 35 (2015), 431-460.  doi: 10.1017/etds.2013.60.  Google Scholar

[27]

J. Kari, Rice's theorem for the limit sets of cellular automata, Theoret. Comput. Sci., 127 (1994), 229-254.  doi: 10.1016/0304-3975(94)90041-8.  Google Scholar

[28]

J. Kari, Cellular automata, tilings and (un)computability, in Combinatorics, Words and Symbolic Dynamics, Encyclopedia Math. Appl., 159, Cambridge Univ. Press, Cambridge, 2016, 241–295.  Google Scholar

[29]

P. W. Kasteleyn, The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice, Physica, 27 (1961), 1209-1225.  doi: 10.1016/0031-8914(61)90063-5.  Google Scholar

[30]

W. Krieger, On entropy and generators of measure-preserving transformations, Trans. Amer. Math. Soc., 149 (1970), 453-464.  doi: 10.1090/S0002-9947-1970-0259068-3.  Google Scholar

[31]

E. H. Lieb, Residual entropy of square ice, Phys. Rev., 162, 1967. doi: 10.1103/PhysRev.162.162.  Google Scholar

[32]

D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems, 4 (1984), 283-300.  doi: 10.1017/S0143385700002443.  Google Scholar

[33]

D. Lind, Multi-dimensional symbolic dynamics, in Symbolic Dynamics and Its Applications, Proc. Sympos. Appl. Math., 60, Amer. Math. Soc., Providence, RI, 2004, 61–79. doi: 10.1090/psapm/060/2078846.  Google Scholar

[34]

K. McGoff and R. Pavlov, Random $\Bbb{Z}^d$-shifts of finite type, J. Mod. Dyn., 10 (2016), 287-330.  doi: 10.3934/jmd.2016.10.287.  Google Scholar

[35]

T. Meyerovitch, Growth-type invariants for $\Bbb Z^d$ subshifts of finite type and arithmetical classes of real numbers, Invent. Math., 184 (2011), 567-589.  doi: 10.1007/s00222-010-0296-1.  Google Scholar

[36]

S. Mozes, Tilings, substitution systems and dynamical systems generated by them, J. Analyse Math., 53 (1989), 139-186.  doi: 10.1007/BF02793412.  Google Scholar

[37]

R. Pavlov and M. Schraudner, Entropies realizable by block gluing $\Bbb{Z}^d$ shifts of finite type, J. Anal. Math., 126 (2015), 113-174.  doi: 10.1007/s11854-015-0014-4.  Google Scholar

[38]

A. Quas and T. Soo, Ergodic universality of some topological dynamical systems, Trans. Amer. Math. Soc., 368 (2016), 4137–4170. doi: 10.1090/tran/6489.  Google Scholar

[39]

R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math., 12 (1971), 177-209.  doi: 10.1007/BF01418780.  Google Scholar

[40]

S. Shelah and B. Weiss, Measurable recurrence and quasi-invariant measures, Israel J. Math., 43 (1982), 154-160.  doi: 10.1007/BF02761726.  Google Scholar

[41]

S. G. Simpson, Medvedev degrees of two-dimensional subshifts of finite type, Ergodic Theory Dynam. Systems, 34 (2014), 679-688.  doi: 10.1017/etds.2012.152.  Google Scholar

[42]

A. Tserunyan, Finite generators for countable group actions in the Borel and Baire category settings, Adv. Math., 269 (2015), 585-646.  doi: 10.1016/j.aim.2014.10.013.  Google Scholar

[43]

B. Weiss, Measurable dynamics, in Conference in Modern Analysis and Probability, Contemp. Math., 26, Amer. Math. Soc., Providence, RI, 1984,395–421. doi: 10.1090/conm/026/737417.  Google Scholar

[44]

B. Weiss, Countable generators in dynamics–-universal minimal models, in Measure and Measurable Dynamics, Contemp. Math., 94, Amer. Math. Soc., Providence, RI, 1989,321–326. doi: 10.1090/conm/094/1013000.  Google Scholar

[45]

C. Zinoviadis, Hierarchy and expansiveness in 2D subshifts of finite type, in Language and Automata Theory and Applications, Lecture Notes in Computer Science, 8977, Springer, Cham, 2015,365–377. doi: 10.1007/978-3-319-15579-1_28.  Google Scholar

[1]

Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301

[2]

Mikhail Lyubich. Forty years of unimodal dynamics: On the occasion of Artur Avila winning the Brin Prize. Journal of Modern Dynamics, 2012, 6 (2) : 183-203. doi: 10.3934/jmd.2012.6.183

[3]

Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations. Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139

[4]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[5]

James Kingsbery, Alex Levin, Anatoly Preygel, Cesar E. Silva. Dynamics of the $p$-adic shift and applications. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 209-218. doi: 10.3934/dcds.2011.30.209

[6]

Jim Wiseman. Symbolic dynamics from signed matrices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621

[7]

George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43

[8]

Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014

[9]

Dominique Lecomte. Hurewicz-like tests for Borel subsets of the plane. Electronic Research Announcements, 2005, 11: 95-102.

[10]

Dong Han Kim. The dynamical Borel-Cantelli lemma for interval maps. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 891-900. doi: 10.3934/dcds.2007.17.891

[11]

The Editors. The 2018 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2019, 15: 425-426. doi: 10.3934/jmd.2019025

[12]

The Editors. The 2015 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2016, 10: 173-174. doi: 10.3934/jmd.2016.10.173

[13]

The Editors. The 2017 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2019, 15: 131-132. doi: 10.3934/jmd.2019015

[14]

The Editors. The 2013 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2014, 8 (1) : i-ii. doi: 10.3934/jmd.2014.8.1i

[15]

The Editors. The 2009 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2010, 4 (2) : i-ii. doi: 10.3934/jmd.2010.4.2i

[16]

The Editors. The 2011 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2012, 6 (2) : i-ii. doi: 10.3934/jmd.2012.6.2i

[17]

The Editors. The 2008 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2008, 2 (3) : i-ii. doi: 10.3934/jmd.2008.2.3i

[18]

Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269

[19]

Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245

[20]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (93)
  • HTML views (166)
  • Cited by (0)

Other articles
by authors

[Back to Top]