2019, 15: 437-449. doi: 10.3934/jmd.2019027

From invariance to self-similarity: The work of Michael Hochman on fractal dimension and its aftermath

Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received  November 20, 2019 Published  December 2019

M. Hochman's work on the dimension of self-similar sets has given impetus to resolving other questions regarding fractal dimension. We describe Hochman's approach and its influence on the subsequent resolution by P. Shmerkin of the conjecture on the dimension of the intersection of $ \times p $- and $ \times q $-Cantor sets.

Citation: Hillel Furstenberg. From invariance to self-similarity: The work of Michael Hochman on fractal dimension and its aftermath. Journal of Modern Dynamics, 2019, 15: 437-449. doi: 10.3934/jmd.2019027
References:
[1]

H. Furstenberg, Intersections of Cantor sets and transversality of semigroups. In Problems in Analysis (Symposium in honor of Salomon Bochner, Princeton University Press, Princeton, N.J. 1969), 41–59, 1970.  Google Scholar

[2]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.  Google Scholar

[3]

M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2), 180 (2014), 773-822.  doi: 10.4007/annals.2014.180.2.7.  Google Scholar

[4]

P. Shmerkin, On Furstenberg's intersection conjecture, self-similar measures, and the $L^q$-norms of convolutions, Ann. of Math. (2), 189 (2019), 319–391. doi: 10.4007/annals.2019.189.2.1.  Google Scholar

[5]

M. Wu, A proof of Furstenberg's conjecture on the intersection of $\times p$ and $\times q$-invariant sets, arXiv: 1609.08053v3, February 2019. Google Scholar

show all references

References:
[1]

H. Furstenberg, Intersections of Cantor sets and transversality of semigroups. In Problems in Analysis (Symposium in honor of Salomon Bochner, Princeton University Press, Princeton, N.J. 1969), 41–59, 1970.  Google Scholar

[2]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.  Google Scholar

[3]

M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2), 180 (2014), 773-822.  doi: 10.4007/annals.2014.180.2.7.  Google Scholar

[4]

P. Shmerkin, On Furstenberg's intersection conjecture, self-similar measures, and the $L^q$-norms of convolutions, Ann. of Math. (2), 189 (2019), 319–391. doi: 10.4007/annals.2019.189.2.1.  Google Scholar

[5]

M. Wu, A proof of Furstenberg's conjecture on the intersection of $\times p$ and $\times q$-invariant sets, arXiv: 1609.08053v3, February 2019. Google Scholar

[1]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[2]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[3]

Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191

[4]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[5]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[6]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[7]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[8]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[9]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[10]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[11]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[12]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (181)
  • HTML views (387)
  • Cited by (0)

Other articles
by authors

[Back to Top]