2019, 15: 437-449. doi: 10.3934/jmd.2019027

From invariance to self-similarity: The work of Michael Hochman on fractal dimension and its aftermath

Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received  November 20, 2019 Published  December 2019

M. Hochman's work on the dimension of self-similar sets has given impetus to resolving other questions regarding fractal dimension. We describe Hochman's approach and its influence on the subsequent resolution by P. Shmerkin of the conjecture on the dimension of the intersection of $ \times p $- and $ \times q $-Cantor sets.

Citation: Hillel Furstenberg. From invariance to self-similarity: The work of Michael Hochman on fractal dimension and its aftermath. Journal of Modern Dynamics, 2019, 15: 437-449. doi: 10.3934/jmd.2019027
References:
[1]

H. Furstenberg, Intersections of Cantor sets and transversality of semigroups. In Problems in Analysis (Symposium in honor of Salomon Bochner, Princeton University Press, Princeton, N.J. 1969), 41–59, 1970.  Google Scholar

[2]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.  Google Scholar

[3]

M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2), 180 (2014), 773-822.  doi: 10.4007/annals.2014.180.2.7.  Google Scholar

[4]

P. Shmerkin, On Furstenberg's intersection conjecture, self-similar measures, and the $L^q$-norms of convolutions, Ann. of Math. (2), 189 (2019), 319–391. doi: 10.4007/annals.2019.189.2.1.  Google Scholar

[5]

M. Wu, A proof of Furstenberg's conjecture on the intersection of $\times p$ and $\times q$-invariant sets, arXiv: 1609.08053v3, February 2019. Google Scholar

show all references

References:
[1]

H. Furstenberg, Intersections of Cantor sets and transversality of semigroups. In Problems in Analysis (Symposium in honor of Salomon Bochner, Princeton University Press, Princeton, N.J. 1969), 41–59, 1970.  Google Scholar

[2]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.  Google Scholar

[3]

M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2), 180 (2014), 773-822.  doi: 10.4007/annals.2014.180.2.7.  Google Scholar

[4]

P. Shmerkin, On Furstenberg's intersection conjecture, self-similar measures, and the $L^q$-norms of convolutions, Ann. of Math. (2), 189 (2019), 319–391. doi: 10.4007/annals.2019.189.2.1.  Google Scholar

[5]

M. Wu, A proof of Furstenberg's conjecture on the intersection of $\times p$ and $\times q$-invariant sets, arXiv: 1609.08053v3, February 2019. Google Scholar

[1]

Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417

[2]

S. Astels. Thickness measures for Cantor sets. Electronic Research Announcements, 1999, 5: 108-111.

[3]

Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015

[4]

Rogelio Valdez. Self-similarity of the Mandelbrot set for real essentially bounded combinatorics. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 897-922. doi: 10.3934/dcds.2006.16.897

[5]

José Ignacio Alvarez-Hamelin, Luca Dall'Asta, Alain Barrat, Alessandro Vespignani. K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases. Networks & Heterogeneous Media, 2008, 3 (2) : 371-393. doi: 10.3934/nhm.2008.3.371

[6]

Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks & Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767

[7]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[8]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[9]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[10]

Silvére Gangloff, Alonso Herrera, Cristobal Rojas, Mathieu Sablik. Computability of topological entropy: From general systems to transformations on Cantor sets and the interval. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4259-4286. doi: 10.3934/dcds.2020180

[11]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[12]

Lulu Fang, Min Wu. Hausdorff dimension of certain sets arising in Engel continued fractions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2375-2393. doi: 10.3934/dcds.2018098

[13]

Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020

[14]

Mehdi Pourbarat. On the arithmetic difference of middle Cantor sets. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4259-4278. doi: 10.3934/dcds.2018186

[15]

Fritz Colonius. Invariance entropy, quasi-stationary measures and control sets. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2093-2123. doi: 10.3934/dcds.2018086

[16]

Bernard Helffer, Thomas Hoffmann-Ostenhof, Susanna Terracini. Nodal minimal partitions in dimension $3$. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 617-635. doi: 10.3934/dcds.2010.28.617

[17]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[18]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[19]

Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235

[20]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

2018 Impact Factor: 0.295

Article outline

[Back to Top]