2020, 16: 1-36. doi: 10.3934/jmd.2020001

The degree of Bowen factors and injective codings of diffeomorphisms

Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, F-91405 Orsay Cedex, France

Received  August 2018 Revised  July 10, 2019 Published  December 2019

We show that symbolic finite-to-one extensions of the type constructed by O. Sarig for surface diffeomorphisms induce Hölder-continuous conjugacies on large sets. We deduce this from their Bowen property. This notion, introduced in a joint work with M. Boyle, generalizes a fact first observed by R. Bowen for Markov partitions. We rely on the notion of degree from finite equivalence theory and magic word isomorphisms.

As an application, we give lower bounds on the number of periodic points first for surface diffeomorphisms (improving a result of Sarig) and for Sinaï billiards maps (building on a result of Baladi and Demers). Finally we characterize surface diffeomorphisms admitting a Hölder-continuous coding of all their aperiodic hyperbolic measures and give a slightly weaker construction preserving local compactness.

Citation: Jérôme Buzzi. The degree of Bowen factors and injective codings of diffeomorphisms. Journal of Modern Dynamics, 2020, 16: 1-36. doi: 10.3934/jmd.2020001
References:
[1]

V. Baladi and M. Demers, On the measure of maximal entropy for finite horizon Sinai billiard maps, J. Amer. Math. Soc., to appear. doi: 10.1090/jams/939.  Google Scholar

[2]

S. Ben Ovadia, Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds, J. Mod. Dyn., 13 (2018), 43-113.  doi: 10.3934/jmd.2018013.  Google Scholar

[3]

R. Bowen, On Axiom A diffeomorphisms, Regional Conference Series in Mathematics, 35, American Mathematical Society, Providence, R.I., 1978.  Google Scholar

[4]

M. Boyle and J. Buzzi, The almost Borel structure of surface diffeomorphisms, Markov shifts and their factors, J. Eur. Math. Soc. (JEMS), 19 (2017), 2739-2782.  doi: 10.4171/JEMS/727.  Google Scholar

[5]

D. Burguet, Periodic expansiveness of smooth surface diffeomorphisms and applications, J. Eur. Math. Soc. (JEMS), to appear. doi: 10.4171/JEMS/925.  Google Scholar

[6]

J. Buzzi, Subshifts of quasi-finite type, Invent. Math., 159 (2005), 369-406.  doi: 10.1007/s00222-004-0392-1.  Google Scholar

[7]

J. Buzzi, S. Crovisier and O. Sarig, Measures of maximal entropy for surface diffeomorphisms, arXiv: 1811.02240, 2018. Google Scholar

[8]

N. Chernov and R. Markarian, Chaotic Billiards, Mathematical Surveys and Monographs, 127, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/surv/127.  Google Scholar

[9]

E. Covan and M. Paul, Endomorphisms of irreducible subshifts of finite type, Math. Systems Theory, 8 (1974/75), 167-175.  doi: 10.1007/BF01762187.  Google Scholar

[10]

E. Covan and M. Paul, Sofic systems, Israel J. Math., 20 (1975), 165-177.  doi: 10.1007/BF02757884.  Google Scholar

[11]

E. Covan and M. Paul, Finite procedures for sofic systems, Monatsh. Math., 83 (1977), 265-278.  doi: 10.1007/BF01387905.  Google Scholar

[12]

D. Fried, Finitely presented dynamical systems, Ergodic Theory Dynam. Systems, 7 (1987), 489-507.  doi: 10.1017/S014338570000417X.  Google Scholar

[13]

B. M. Gurevich and S. V. Savchenko, Thermodynamic formalism for symbolic Markov chains with a countable number of states, Russian Math. Surveys, 53 (1998), 245-344.  doi: 10.1070/rm1998v053n02ABEH000017.  Google Scholar

[14]

G. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory, 3 (1969), 320-375.  doi: 10.1007/BF01691062.  Google Scholar

[15]

V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits, Comm. Math. Phys., 211 (2000), 253-271.  doi: 10.1007/s002200050811.  Google Scholar

[16] A. Katok and B. Hasselblatt, An Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511809187.  Google Scholar
[17]

A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4190-4.  Google Scholar

[18]

B. Kitchens, Symbolic Dynamics. One-Sided, Two-Sided and Countable State Markov Shifts, Universitext, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-58822-8.  Google Scholar

[19]

Y. Lima and C. Matheus, Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities, Ann. Sci. ïc. Norm. Supér. (4), 51 (2018), 1-38.   Google Scholar

[20]

Y. Lima and O. Sarig, Symbolic dynamics for three-dimensional flows with positive topological entropy, J. Eur. Math. Soc. (JEMS), 21 (2019), 199-256.  doi: 10.4171/JEMS/834.  Google Scholar

[21] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[22]

A. Manning, Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc., 3 (1971), 215-220.  doi: 10.1112/blms/3.2.215.  Google Scholar

[23]

S. Newhouse, Continuity properties of entropy, Ann. of Math. (2), 129 (1989), 215-235.  doi: 10.2307/1971492.  Google Scholar

[24]

O. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc., 26 (2013), 341-426.  doi: 10.1090/S0894-0347-2012-00758-9.  Google Scholar

[25]

O. Sarig, private communication, 2015. Google Scholar

show all references

References:
[1]

V. Baladi and M. Demers, On the measure of maximal entropy for finite horizon Sinai billiard maps, J. Amer. Math. Soc., to appear. doi: 10.1090/jams/939.  Google Scholar

[2]

S. Ben Ovadia, Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds, J. Mod. Dyn., 13 (2018), 43-113.  doi: 10.3934/jmd.2018013.  Google Scholar

[3]

R. Bowen, On Axiom A diffeomorphisms, Regional Conference Series in Mathematics, 35, American Mathematical Society, Providence, R.I., 1978.  Google Scholar

[4]

M. Boyle and J. Buzzi, The almost Borel structure of surface diffeomorphisms, Markov shifts and their factors, J. Eur. Math. Soc. (JEMS), 19 (2017), 2739-2782.  doi: 10.4171/JEMS/727.  Google Scholar

[5]

D. Burguet, Periodic expansiveness of smooth surface diffeomorphisms and applications, J. Eur. Math. Soc. (JEMS), to appear. doi: 10.4171/JEMS/925.  Google Scholar

[6]

J. Buzzi, Subshifts of quasi-finite type, Invent. Math., 159 (2005), 369-406.  doi: 10.1007/s00222-004-0392-1.  Google Scholar

[7]

J. Buzzi, S. Crovisier and O. Sarig, Measures of maximal entropy for surface diffeomorphisms, arXiv: 1811.02240, 2018. Google Scholar

[8]

N. Chernov and R. Markarian, Chaotic Billiards, Mathematical Surveys and Monographs, 127, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/surv/127.  Google Scholar

[9]

E. Covan and M. Paul, Endomorphisms of irreducible subshifts of finite type, Math. Systems Theory, 8 (1974/75), 167-175.  doi: 10.1007/BF01762187.  Google Scholar

[10]

E. Covan and M. Paul, Sofic systems, Israel J. Math., 20 (1975), 165-177.  doi: 10.1007/BF02757884.  Google Scholar

[11]

E. Covan and M. Paul, Finite procedures for sofic systems, Monatsh. Math., 83 (1977), 265-278.  doi: 10.1007/BF01387905.  Google Scholar

[12]

D. Fried, Finitely presented dynamical systems, Ergodic Theory Dynam. Systems, 7 (1987), 489-507.  doi: 10.1017/S014338570000417X.  Google Scholar

[13]

B. M. Gurevich and S. V. Savchenko, Thermodynamic formalism for symbolic Markov chains with a countable number of states, Russian Math. Surveys, 53 (1998), 245-344.  doi: 10.1070/rm1998v053n02ABEH000017.  Google Scholar

[14]

G. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory, 3 (1969), 320-375.  doi: 10.1007/BF01691062.  Google Scholar

[15]

V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits, Comm. Math. Phys., 211 (2000), 253-271.  doi: 10.1007/s002200050811.  Google Scholar

[16] A. Katok and B. Hasselblatt, An Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511809187.  Google Scholar
[17]

A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4190-4.  Google Scholar

[18]

B. Kitchens, Symbolic Dynamics. One-Sided, Two-Sided and Countable State Markov Shifts, Universitext, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-58822-8.  Google Scholar

[19]

Y. Lima and C. Matheus, Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities, Ann. Sci. ïc. Norm. Supér. (4), 51 (2018), 1-38.   Google Scholar

[20]

Y. Lima and O. Sarig, Symbolic dynamics for three-dimensional flows with positive topological entropy, J. Eur. Math. Soc. (JEMS), 21 (2019), 199-256.  doi: 10.4171/JEMS/834.  Google Scholar

[21] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[22]

A. Manning, Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc., 3 (1971), 215-220.  doi: 10.1112/blms/3.2.215.  Google Scholar

[23]

S. Newhouse, Continuity properties of entropy, Ann. of Math. (2), 129 (1989), 215-235.  doi: 10.2307/1971492.  Google Scholar

[24]

O. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc., 26 (2013), 341-426.  doi: 10.1090/S0894-0347-2012-00758-9.  Google Scholar

[25]

O. Sarig, private communication, 2015. Google Scholar

Figure 1.  The subshift of finite type in Example 4.9
[1]

C. Morales. On spiral periodic points and saddles for surface diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1191-1195. doi: 10.3934/dcds.2011.29.1191

[2]

Wolfgang Krieger, Kengo Matsumoto. Markov-Dyck shifts, neutral periodic points and topological conjugacy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 1-18. doi: 10.3934/dcds.2019001

[3]

Snir Ben Ovadia. Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds. Journal of Modern Dynamics, 2018, 13: 43-113. doi: 10.3934/jmd.2018013

[4]

Brian Marcus and Selim Tuncel. Powers of positive polynomials and codings of Markov chains onto Bernoulli shifts. Electronic Research Announcements, 1999, 5: 91-101.

[5]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[6]

Marian Gidea, Yitzchak Shmalo. Combinatorial approach to detection of fixed points, periodic orbits, and symbolic dynamics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6123-6148. doi: 10.3934/dcds.2018264

[7]

Yvon Maday, Ngoc Cuong Nguyen, Anthony T. Patera, S. H. Pau. A general multipurpose interpolation procedure: the magic points. Communications on Pure & Applied Analysis, 2009, 8 (1) : 383-404. doi: 10.3934/cpaa.2009.8.383

[8]

Marc Kesseböhmer, Sabrina Kombrink. A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 335-352. doi: 10.3934/dcdss.2017016

[9]

Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419

[10]

Stefan Haller, Tomasz Rybicki, Josef Teichmann. Smooth perfectness for the group of diffeomorphisms. Journal of Geometric Mechanics, 2013, 5 (3) : 281-294. doi: 10.3934/jgm.2013.5.281

[11]

Rafael Alcaraz Barrera. Topological and ergodic properties of symmetric sub-shifts. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4459-4486. doi: 10.3934/dcds.2014.34.4459

[12]

Mrinal Kanti Roychowdhury. Quantization coefficients for ergodic measures on infinite symbolic space. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2829-2846. doi: 10.3934/dcds.2014.34.2829

[13]

John Banks, Thi T. D. Nguyen, Piotr Oprocha, Brett Stanley, Belinda Trotta. Dynamics of spacing shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4207-4232. doi: 10.3934/dcds.2013.33.4207

[14]

Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms II. Electronic Research Announcements, 2001, 7: 28-36.

[15]

Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms I. Electronic Research Announcements, 2001, 7: 17-27.

[16]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[17]

Thierry de la Rue. An introduction to joinings in ergodic theory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 121-142. doi: 10.3934/dcds.2006.15.121

[18]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[19]

Omri M. Sarig. Bernoulli equilibrium states for surface diffeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 593-608. doi: 10.3934/jmd.2011.5.593

[20]

Yair Daon. Bernoullicity of equilibrium measures on countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4003-4015. doi: 10.3934/dcds.2013.33.4003

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (167)
  • HTML views (359)
  • Cited by (0)

Other articles
by authors

[Back to Top]