2020, 16: 37-57. doi: 10.3934/jmd.2020002

Rigidity of a class of smooth singular flows on $ \mathbb{T}^2 $

Department of Mathematics, University of Maryland, College Park, MD 20742-4015, USA

Received  November 05, 2018 Revised  September 12, 2019 Published  February 2020

We study joining rigidity in the class of von Neumann flows with one singularity. They are given by a smooth vector field $ \mathscr{X} $ on $ \mathbb{T}^2\setminus \{a\} $, where $ \mathscr{X} $ is not defined at $ a\in \mathbb{T}^2 $ and $ \mathscr{X} $ has one critical point which is a center. It follows that the phase space can be decomposed into a (topological disc) $ D_\mathscr{X} $ and an ergodic component $ E_\mathscr{X} = \mathbb{T}^2\setminus D_\mathscr{X} $. Let $ \omega_\mathscr{X} $ be the 1-form associated to $ \mathscr{X} $. We show that if $ |\int_{E_{\mathscr{X}_1}}d\omega_{\mathscr{X}_1}|\neq |\int_{E_{\mathscr{X}_2}}d\omega_{\mathscr{X}_2}| $, then the corresponding flows $ (v_t^{\mathscr{X}_1}) $ and $ (v_t^{\mathscr{X}_2}) $ are disjoint. It also follows that for every $ \mathscr{X} $ there is a uniquely associated frequency $ \alpha = \alpha_{\mathscr{X}}\in \mathbb{T} $. We show that for a full measure set of $ \alpha\in \mathbb{T} $ the class of smooth time changes of $ (v_t^\mathscr{X_ \alpha}) $ is joining rigid, i.e., every two smooth time changes are either cohomologous or disjoint. This gives a natural class of flows for which the answer to [15,Problem 3] is positive.

Citation: Changguang Dong, Adam Kanigowski. Rigidity of a class of smooth singular flows on $ \mathbb{T}^2 $. Journal of Modern Dynamics, 2020, 16: 37-57. doi: 10.3934/jmd.2020002
References:
[1]

V. I. Arnol'd, Topological and ergodic properties of closed 1-forms with incommensurable periods, Functional Analysis and its Applications, 25 (1991), 81-90.  doi: 10.1007/BF01079587.  Google Scholar

[2]

G. Forni and A. Kanigowski, Mutliple mixing and disjointness for time changes of bounded-type Heisenberg nilflows, submitted. Google Scholar

[3]

K. Frączek and M. Lemańczyk, On mild mixing of special flows over irrational rotations under piecewise smooth functions, Ergodic Theory and Dynam. Systems, 26 (2006), 719-738.  doi: 10.1017/S0143385706000046.  Google Scholar

[4]

K. FrączekM. Lemańczyk and E. Lesigne, Mild mixing property for special flows under piecewise constant functions, Discrete Contin. Dyn. Syst., 19 (2007), 691-710.  doi: 10.3934/dcds.2007.19.691.  Google Scholar

[5]

K. Frączek and M. Lemańczyk, Smooth singular flows in dimension 2 with the minimal self-joining property, Monatsh. Math., 156 (2009), 11-45.  doi: 10.1007/s00605-008-0564-y.  Google Scholar

[6]

A. Kanigowski, M. Lemańczyk and C. Ulcigrai, On disjointness properties of parabolic flows, Invent. Math. (2020). doi: 10.1007/s00222-019-00940-y.  Google Scholar

[7]

A. Kanigowski and A. Solomko, On isomorphism problem for von Neumann flows with one discontinuity, Israel Journal of Mathematics, 226 (2018), 685-702.  doi: 10.1007/s11856-018-1701-5.  Google Scholar

[8]

A. Kanigowski and A. Solomko, On rank of von Neumann special flows, Ergodic Theory and Dynam. Systems, 38 (2018), 2245-2256.  doi: 10.1017/etds.2016.131.  Google Scholar

[9]

A. Katok, Interval exchange transformations and some special flows are not mixing, Israel J. Math., 35 (1980), 301-310.  doi: 10.1007/BF02760655.  Google Scholar

[10]

A. Katok and J.-P. Thouvenot, Spectral properties and combinatorial constructions in ergodic theory, Handbook in Dynamical Systems, 1 (2005), 649-743.  doi: 10.1016/S1874-575X(06)80036-6.  Google Scholar

[11]

A. Kolmogorov, On dynamical systems with an integral invariant on the torus., Doklady Akad. Nauk SSSR (N.S.), 93 (1953), 763-766.   Google Scholar

[12]

M. Ratner, Rigidity of horocycle flows, Ann. of Math., 115 (1982), 597-614.  doi: 10.2307/2007014.  Google Scholar

[13]

M. Ratner, Horocycle flows, joinings and rigidity of products, Ann. of Math., 118 (1983), 277-313.  doi: 10.2307/2007030.  Google Scholar

[14]

M. Ratner, Rigidity of time changes for horocycle flows, Acta Mathematica, 156 (1986), 1-32.  doi: 10.1007/BF02399199.  Google Scholar

[15]

M. Ratner, Rigid reparametrizations and cohomology for horocycle flows, Invent. Math., 88 (1987), 341-374.  doi: 10.1007/BF01388912.  Google Scholar

[16]

J. von Neumann, Zur Operatorenmethode in der Klassischen Mechanik, Ann. of Math., 33 (1932), 587-642.  doi: 10.2307/1968537.  Google Scholar

show all references

References:
[1]

V. I. Arnol'd, Topological and ergodic properties of closed 1-forms with incommensurable periods, Functional Analysis and its Applications, 25 (1991), 81-90.  doi: 10.1007/BF01079587.  Google Scholar

[2]

G. Forni and A. Kanigowski, Mutliple mixing and disjointness for time changes of bounded-type Heisenberg nilflows, submitted. Google Scholar

[3]

K. Frączek and M. Lemańczyk, On mild mixing of special flows over irrational rotations under piecewise smooth functions, Ergodic Theory and Dynam. Systems, 26 (2006), 719-738.  doi: 10.1017/S0143385706000046.  Google Scholar

[4]

K. FrączekM. Lemańczyk and E. Lesigne, Mild mixing property for special flows under piecewise constant functions, Discrete Contin. Dyn. Syst., 19 (2007), 691-710.  doi: 10.3934/dcds.2007.19.691.  Google Scholar

[5]

K. Frączek and M. Lemańczyk, Smooth singular flows in dimension 2 with the minimal self-joining property, Monatsh. Math., 156 (2009), 11-45.  doi: 10.1007/s00605-008-0564-y.  Google Scholar

[6]

A. Kanigowski, M. Lemańczyk and C. Ulcigrai, On disjointness properties of parabolic flows, Invent. Math. (2020). doi: 10.1007/s00222-019-00940-y.  Google Scholar

[7]

A. Kanigowski and A. Solomko, On isomorphism problem for von Neumann flows with one discontinuity, Israel Journal of Mathematics, 226 (2018), 685-702.  doi: 10.1007/s11856-018-1701-5.  Google Scholar

[8]

A. Kanigowski and A. Solomko, On rank of von Neumann special flows, Ergodic Theory and Dynam. Systems, 38 (2018), 2245-2256.  doi: 10.1017/etds.2016.131.  Google Scholar

[9]

A. Katok, Interval exchange transformations and some special flows are not mixing, Israel J. Math., 35 (1980), 301-310.  doi: 10.1007/BF02760655.  Google Scholar

[10]

A. Katok and J.-P. Thouvenot, Spectral properties and combinatorial constructions in ergodic theory, Handbook in Dynamical Systems, 1 (2005), 649-743.  doi: 10.1016/S1874-575X(06)80036-6.  Google Scholar

[11]

A. Kolmogorov, On dynamical systems with an integral invariant on the torus., Doklady Akad. Nauk SSSR (N.S.), 93 (1953), 763-766.   Google Scholar

[12]

M. Ratner, Rigidity of horocycle flows, Ann. of Math., 115 (1982), 597-614.  doi: 10.2307/2007014.  Google Scholar

[13]

M. Ratner, Horocycle flows, joinings and rigidity of products, Ann. of Math., 118 (1983), 277-313.  doi: 10.2307/2007030.  Google Scholar

[14]

M. Ratner, Rigidity of time changes for horocycle flows, Acta Mathematica, 156 (1986), 1-32.  doi: 10.1007/BF02399199.  Google Scholar

[15]

M. Ratner, Rigid reparametrizations and cohomology for horocycle flows, Invent. Math., 88 (1987), 341-374.  doi: 10.1007/BF01388912.  Google Scholar

[16]

J. von Neumann, Zur Operatorenmethode in der Klassischen Mechanik, Ann. of Math., 33 (1932), 587-642.  doi: 10.2307/1968537.  Google Scholar

[1]

Antoine Gournay. A dynamical approach to von Neumann dimension. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 967-987. doi: 10.3934/dcds.2010.26.967

[2]

Peter Benner, Tobias Breiten, Carsten Hartmann, Burkhard Schmidt. Model reduction of controlled Fokker–Planck and Liouville–von Neumann equations. Journal of Computational Dynamics, 2020, 7 (1) : 1-33. doi: 10.3934/jcd.2020001

[3]

David Constantine. 2-Frame flow dynamics and hyperbolic rank-rigidity in nonpositive curvature. Journal of Modern Dynamics, 2008, 2 (4) : 719-740. doi: 10.3934/jmd.2008.2.719

[4]

Wenyu Pan. Joining measures for horocycle flows on abelian covers. Journal of Modern Dynamics, 2018, 12: 17-54. doi: 10.3934/jmd.2018003

[5]

Pascal Cherrier, Albert Milani. Hyperbolic equations of Von Karman type. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 125-137. doi: 10.3934/dcdss.2016.9.125

[6]

Feng Zhang, Jinting Wang, Bin Liu. Equilibrium joining probabilities in observable queues with general service and setup times. Journal of Industrial & Management Optimization, 2013, 9 (4) : 901-917. doi: 10.3934/jimo.2013.9.901

[7]

Ke Sun, Jinting Wang, Zhe George Zhang. Strategic joining in a single-server retrial queue with batch service. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020120

[8]

Francesca Alessio, Carlo Carminati, Piero Montecchiari. Heteroclinic motions joining almost periodic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 569-584. doi: 10.3934/dcds.1999.5.569

[9]

Andrea Venturelli. A Variational proof of the existence of Von Schubart's orbit. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 699-717. doi: 10.3934/dcdsb.2008.10.699

[10]

Thomas Hillen, Kevin J. Painter, Amanda C. Swan, Albert D. Murtha. Moments of von mises and fisher distributions and applications. Mathematical Biosciences & Engineering, 2017, 14 (3) : 673-694. doi: 10.3934/mbe.2017038

[11]

Ilesanmi Adeboye, Harrison Bray, David Constantine. Entropy rigidity and Hilbert volume. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1731-1744. doi: 10.3934/dcds.2019075

[12]

A. Kononenko. Twisted cocycles and rigidity problems. Electronic Research Announcements, 1995, 1: 26-34.

[13]

Jean Dolbeault, Maria J. Esteban, Gaspard Jankowiak. Onofri inequalities and rigidity results. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3059-3078. doi: 10.3934/dcds.2017131

[14]

Mads R. Bisgaard. Mather theory and symplectic rigidity. Journal of Modern Dynamics, 2019, 15: 165-207. doi: 10.3934/jmd.2019018

[15]

Woochul Jung, Keonhee Lee, Carlos Morales, Jumi Oh. Rigidity of random group actions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6845-6854. doi: 10.3934/dcds.2020130

[16]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020322

[17]

Irena Lasiecka, Justin Webster. Eliminating flutter for clamped von Karman plates immersed in subsonic flows. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1935-1969. doi: 10.3934/cpaa.2014.13.1935

[18]

Marta Lewicka, Hui Li. Convergence of equilibria for incompressible elastic plates in the von Kármán regime. Communications on Pure & Applied Analysis, 2015, 14 (1) : 143-166. doi: 10.3934/cpaa.2015.14.143

[19]

Plamen Stefanov and Gunther Uhlmann. Recent progress on the boundary rigidity problem. Electronic Research Announcements, 2005, 11: 64-70.

[20]

Ralf Spatzier. On the work of Rodriguez Hertz on rigidity in dynamics. Journal of Modern Dynamics, 2016, 10: 191-207. doi: 10.3934/jmd.2016.10.191

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (112)
  • HTML views (332)
  • Cited by (0)

Other articles
by authors

[Back to Top]