• Previous Article
    Counting square-tiled surfaces with prescribed real and imaginary foliations and connections to Mirzakhani's asymptotics for simple closed hyperbolic geodesics
  • JMD Home
  • This Volume
  • Next Article
    Rigidity of a class of smooth singular flows on $ \mathbb{T}^2 $
  2020, 16: 59-80. doi: 10.3934/jmd.2020003

Realizations of groups of piecewise continuous transformations of the circle

CNRS and Univ Lyon, University Claude Bernard Lyon 1, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, 69622 Villeurbanne, France

Received  April 02, 2019 Revised  September 16, 2019 Published  February 2020

We study the near action of the group $ \mathrm{PC} $ of piecewise continuous self-transformations of the circle. Elements of this group are only defined modulo indeterminacy on a finite subset, which raises the question of realizability: a subgroup of $ \mathrm{PC} $ is said to be realizable if it can be lifted to a group of permutations of the circle.

We prove that every finitely generated abelian subgroup of $ \mathrm{PC} $ is realizable. We show that this is not true for arbitrary subgroups, by exhibiting a non-realizable finitely generated subgroup of the group of interval exchanges with flips.

The group of (oriented) interval exchanges is obviously realizable (choosing the unique left-continuous representative). We show that it has only two realizations (up to conjugation by a finitely supported permutation): the left and right-continuous ones.

Citation: Yves Cornulier. Realizations of groups of piecewise continuous transformations of the circle. Journal of Modern Dynamics, 2020, 16: 59-80. doi: 10.3934/jmd.2020003
References:
[1]

P. Arnoux, Échanges d'intervalles et flots sur les surfaces, in Ergodic Theory (Sem., Les Plans-sur-Bex, 1980) (French), Monograph. Enseign. Math., 29, Univ. Genève, Geneva, 1981, 5–38.  Google Scholar

[2]

P. Arnoux, Un invariant pour les échanges d'intervalles et les flots sur les surfaces, Thèse 3e cycle, Fac. Sci. Reims, 1981. Google Scholar

[3]

M. Boshernitzan, Subgroup of interval exchanges generated by torsion elements and rotations, Proc. Amer. Math. Soc., 144 (2016), 2565-2573.  doi: 10.1090/proc/12958.  Google Scholar

[4]

Y. Cornulier, Groupes pleins-topologiques (d'après Matui, Juschenko, Monod, $\dots$), Astérisque No. 361 (2014), Exp. No. 1064, ⅷ, 183–223.  Google Scholar

[5]

Y. Cornulier, Commensurating actions for groups of piecewise continuous transformations, arXiv: 1803.08572, (2018). Google Scholar

[6]

Y. Cornulier, Near actions, arXiv: 1901.05065, (2019). Google Scholar

[7]

F. DahmaniK. Fujiwara and V. Guirardel, Free groups of interval exchange transformations are rare, Groups Geom. Dyn., 7 (2013), 883-910.  doi: 10.4171/GGD/209.  Google Scholar

[8]

F. Dahmani, K. Fujiwara and V. Guirardel, Solvable groups of interval exchange transformations, to appear in Ann. Fac. Sci. Toulouse, arXiv: 1701.00377, 2018. Google Scholar

[9]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math. (2), 178 (2013), 775–787. doi: 10.4007/annals.2013.178.2.7.  Google Scholar

[10]

K. JuschenkoN. Matte BonN. Monod and M. de la Salle, Extensive amenability and an application to interval exchanges, Ergodic Theory Dynam. Systems, 38 (2018), 195-219.  doi: 10.1017/etds.2016.32.  Google Scholar

[11]

M. Keane, Interval exchange transformations, Math. Z., 141 (1975), 25-31.  doi: 10.1007/BF01236981.  Google Scholar

[12]

G. Mackey, Point realizations of transformation groups, Illinois J. Math., 6 (1962), 327-335.  doi: 10.1215/ijm/1255632330.  Google Scholar

[13]

C. F. Novak, Discontinuity-growth of interval-exchange maps, J. Mod. Dyn., 3 (2009), 379-405.  doi: 10.3934/jmd.2009.3.379.  Google Scholar

[14]

W. Scott and L. Sonneborn, Translations of infinite subsets of a group, Colloq. Math., 10 (1963), 217-220.  doi: 10.4064/cm-10-2-217-220.  Google Scholar

[15]

J. B. Wagoner, Delooping classifying spaces in algebraic K-theory, Topology, 11 (1972), 349-370.  doi: 10.1016/0040-9383(72)90031-6.  Google Scholar

show all references

References:
[1]

P. Arnoux, Échanges d'intervalles et flots sur les surfaces, in Ergodic Theory (Sem., Les Plans-sur-Bex, 1980) (French), Monograph. Enseign. Math., 29, Univ. Genève, Geneva, 1981, 5–38.  Google Scholar

[2]

P. Arnoux, Un invariant pour les échanges d'intervalles et les flots sur les surfaces, Thèse 3e cycle, Fac. Sci. Reims, 1981. Google Scholar

[3]

M. Boshernitzan, Subgroup of interval exchanges generated by torsion elements and rotations, Proc. Amer. Math. Soc., 144 (2016), 2565-2573.  doi: 10.1090/proc/12958.  Google Scholar

[4]

Y. Cornulier, Groupes pleins-topologiques (d'après Matui, Juschenko, Monod, $\dots$), Astérisque No. 361 (2014), Exp. No. 1064, ⅷ, 183–223.  Google Scholar

[5]

Y. Cornulier, Commensurating actions for groups of piecewise continuous transformations, arXiv: 1803.08572, (2018). Google Scholar

[6]

Y. Cornulier, Near actions, arXiv: 1901.05065, (2019). Google Scholar

[7]

F. DahmaniK. Fujiwara and V. Guirardel, Free groups of interval exchange transformations are rare, Groups Geom. Dyn., 7 (2013), 883-910.  doi: 10.4171/GGD/209.  Google Scholar

[8]

F. Dahmani, K. Fujiwara and V. Guirardel, Solvable groups of interval exchange transformations, to appear in Ann. Fac. Sci. Toulouse, arXiv: 1701.00377, 2018. Google Scholar

[9]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math. (2), 178 (2013), 775–787. doi: 10.4007/annals.2013.178.2.7.  Google Scholar

[10]

K. JuschenkoN. Matte BonN. Monod and M. de la Salle, Extensive amenability and an application to interval exchanges, Ergodic Theory Dynam. Systems, 38 (2018), 195-219.  doi: 10.1017/etds.2016.32.  Google Scholar

[11]

M. Keane, Interval exchange transformations, Math. Z., 141 (1975), 25-31.  doi: 10.1007/BF01236981.  Google Scholar

[12]

G. Mackey, Point realizations of transformation groups, Illinois J. Math., 6 (1962), 327-335.  doi: 10.1215/ijm/1255632330.  Google Scholar

[13]

C. F. Novak, Discontinuity-growth of interval-exchange maps, J. Mod. Dyn., 3 (2009), 379-405.  doi: 10.3934/jmd.2009.3.379.  Google Scholar

[14]

W. Scott and L. Sonneborn, Translations of infinite subsets of a group, Colloq. Math., 10 (1963), 217-220.  doi: 10.4064/cm-10-2-217-220.  Google Scholar

[15]

J. B. Wagoner, Delooping classifying spaces in algebraic K-theory, Topology, 11 (1972), 349-370.  doi: 10.1016/0040-9383(72)90031-6.  Google Scholar

Figure 1.  Examples of graphs of elements of $ \mathrm{PC}^ {\, \mathrm{\bowtie}}( \mathbf{S}) $ (parameterizing the circle as an interval). The first belongs to $ \mathrm{IET}^+ $; the second belongs to $ \mathrm{IET}^- $; the third belongs to $ \mathrm{IET}^\bowtie \backslash\mathrm{IET}^\pm $. The fourth is a more "typical" element of $ \mathrm{PC}^ {\, \mathrm{\bowtie}}( \mathbf{S}) $. The value at breakpoints is not prescribed, as we consider group elements as defined up to finite indeterminacy
Figure 2.  Graphs of a 132-flip and a triple flip: in each case there are two hyper-clean lifts, choosing either the endpoints denoted as circles or dots
Figure 3.  Graphs of $ u $, $ v $, $ w $ and $ s $
[1]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[2]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[3]

Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005

[4]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[5]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[6]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[7]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[8]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[9]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[10]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[11]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[12]

Gaojun Luo, Xiwang Cao. Two classes of near-optimal codebooks with respect to the Welch bound. Advances in Mathematics of Communications, 2021, 15 (2) : 279-289. doi: 10.3934/amc.2020066

[13]

Yuanshi Wang. Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 963-985. doi: 10.3934/dcdsb.2020149

[14]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[15]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[16]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[17]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[18]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[19]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[20]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (133)
  • HTML views (437)
  • Cited by (0)

Other articles
by authors

[Back to Top]