• Previous Article
    Counting square-tiled surfaces with prescribed real and imaginary foliations and connections to Mirzakhani's asymptotics for simple closed hyperbolic geodesics
  • JMD Home
  • This Volume
  • Next Article
    Rigidity of a class of smooth singular flows on $ \mathbb{T}^2 $
  2020, 16: 59-80. doi: 10.3934/jmd.2020003

Realizations of groups of piecewise continuous transformations of the circle

CNRS and Univ Lyon, University Claude Bernard Lyon 1, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, 69622 Villeurbanne, France

Received  April 02, 2019 Revised  September 16, 2019 Published  February 2020

We study the near action of the group $ \mathrm{PC} $ of piecewise continuous self-transformations of the circle. Elements of this group are only defined modulo indeterminacy on a finite subset, which raises the question of realizability: a subgroup of $ \mathrm{PC} $ is said to be realizable if it can be lifted to a group of permutations of the circle.

We prove that every finitely generated abelian subgroup of $ \mathrm{PC} $ is realizable. We show that this is not true for arbitrary subgroups, by exhibiting a non-realizable finitely generated subgroup of the group of interval exchanges with flips.

The group of (oriented) interval exchanges is obviously realizable (choosing the unique left-continuous representative). We show that it has only two realizations (up to conjugation by a finitely supported permutation): the left and right-continuous ones.

Citation: Yves Cornulier. Realizations of groups of piecewise continuous transformations of the circle. Journal of Modern Dynamics, 2020, 16: 59-80. doi: 10.3934/jmd.2020003
References:
[1]

P. Arnoux, Échanges d'intervalles et flots sur les surfaces, in Ergodic Theory (Sem., Les Plans-sur-Bex, 1980) (French), Monograph. Enseign. Math., 29, Univ. Genève, Geneva, 1981, 5–38.  Google Scholar

[2]

P. Arnoux, Un invariant pour les échanges d'intervalles et les flots sur les surfaces, Thèse 3e cycle, Fac. Sci. Reims, 1981. Google Scholar

[3]

M. Boshernitzan, Subgroup of interval exchanges generated by torsion elements and rotations, Proc. Amer. Math. Soc., 144 (2016), 2565-2573.  doi: 10.1090/proc/12958.  Google Scholar

[4]

Y. Cornulier, Groupes pleins-topologiques (d'après Matui, Juschenko, Monod, $\dots$), Astérisque No. 361 (2014), Exp. No. 1064, ⅷ, 183–223.  Google Scholar

[5]

Y. Cornulier, Commensurating actions for groups of piecewise continuous transformations, arXiv: 1803.08572, (2018). Google Scholar

[6]

Y. Cornulier, Near actions, arXiv: 1901.05065, (2019). Google Scholar

[7]

F. DahmaniK. Fujiwara and V. Guirardel, Free groups of interval exchange transformations are rare, Groups Geom. Dyn., 7 (2013), 883-910.  doi: 10.4171/GGD/209.  Google Scholar

[8]

F. Dahmani, K. Fujiwara and V. Guirardel, Solvable groups of interval exchange transformations, to appear in Ann. Fac. Sci. Toulouse, arXiv: 1701.00377, 2018. Google Scholar

[9]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math. (2), 178 (2013), 775–787. doi: 10.4007/annals.2013.178.2.7.  Google Scholar

[10]

K. JuschenkoN. Matte BonN. Monod and M. de la Salle, Extensive amenability and an application to interval exchanges, Ergodic Theory Dynam. Systems, 38 (2018), 195-219.  doi: 10.1017/etds.2016.32.  Google Scholar

[11]

M. Keane, Interval exchange transformations, Math. Z., 141 (1975), 25-31.  doi: 10.1007/BF01236981.  Google Scholar

[12]

G. Mackey, Point realizations of transformation groups, Illinois J. Math., 6 (1962), 327-335.  doi: 10.1215/ijm/1255632330.  Google Scholar

[13]

C. F. Novak, Discontinuity-growth of interval-exchange maps, J. Mod. Dyn., 3 (2009), 379-405.  doi: 10.3934/jmd.2009.3.379.  Google Scholar

[14]

W. Scott and L. Sonneborn, Translations of infinite subsets of a group, Colloq. Math., 10 (1963), 217-220.  doi: 10.4064/cm-10-2-217-220.  Google Scholar

[15]

J. B. Wagoner, Delooping classifying spaces in algebraic K-theory, Topology, 11 (1972), 349-370.  doi: 10.1016/0040-9383(72)90031-6.  Google Scholar

show all references

References:
[1]

P. Arnoux, Échanges d'intervalles et flots sur les surfaces, in Ergodic Theory (Sem., Les Plans-sur-Bex, 1980) (French), Monograph. Enseign. Math., 29, Univ. Genève, Geneva, 1981, 5–38.  Google Scholar

[2]

P. Arnoux, Un invariant pour les échanges d'intervalles et les flots sur les surfaces, Thèse 3e cycle, Fac. Sci. Reims, 1981. Google Scholar

[3]

M. Boshernitzan, Subgroup of interval exchanges generated by torsion elements and rotations, Proc. Amer. Math. Soc., 144 (2016), 2565-2573.  doi: 10.1090/proc/12958.  Google Scholar

[4]

Y. Cornulier, Groupes pleins-topologiques (d'après Matui, Juschenko, Monod, $\dots$), Astérisque No. 361 (2014), Exp. No. 1064, ⅷ, 183–223.  Google Scholar

[5]

Y. Cornulier, Commensurating actions for groups of piecewise continuous transformations, arXiv: 1803.08572, (2018). Google Scholar

[6]

Y. Cornulier, Near actions, arXiv: 1901.05065, (2019). Google Scholar

[7]

F. DahmaniK. Fujiwara and V. Guirardel, Free groups of interval exchange transformations are rare, Groups Geom. Dyn., 7 (2013), 883-910.  doi: 10.4171/GGD/209.  Google Scholar

[8]

F. Dahmani, K. Fujiwara and V. Guirardel, Solvable groups of interval exchange transformations, to appear in Ann. Fac. Sci. Toulouse, arXiv: 1701.00377, 2018. Google Scholar

[9]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math. (2), 178 (2013), 775–787. doi: 10.4007/annals.2013.178.2.7.  Google Scholar

[10]

K. JuschenkoN. Matte BonN. Monod and M. de la Salle, Extensive amenability and an application to interval exchanges, Ergodic Theory Dynam. Systems, 38 (2018), 195-219.  doi: 10.1017/etds.2016.32.  Google Scholar

[11]

M. Keane, Interval exchange transformations, Math. Z., 141 (1975), 25-31.  doi: 10.1007/BF01236981.  Google Scholar

[12]

G. Mackey, Point realizations of transformation groups, Illinois J. Math., 6 (1962), 327-335.  doi: 10.1215/ijm/1255632330.  Google Scholar

[13]

C. F. Novak, Discontinuity-growth of interval-exchange maps, J. Mod. Dyn., 3 (2009), 379-405.  doi: 10.3934/jmd.2009.3.379.  Google Scholar

[14]

W. Scott and L. Sonneborn, Translations of infinite subsets of a group, Colloq. Math., 10 (1963), 217-220.  doi: 10.4064/cm-10-2-217-220.  Google Scholar

[15]

J. B. Wagoner, Delooping classifying spaces in algebraic K-theory, Topology, 11 (1972), 349-370.  doi: 10.1016/0040-9383(72)90031-6.  Google Scholar

Figure 1.  Examples of graphs of elements of $ \mathrm{PC}^ {\, \mathrm{\bowtie}}( \mathbf{S}) $ (parameterizing the circle as an interval). The first belongs to $ \mathrm{IET}^+ $; the second belongs to $ \mathrm{IET}^- $; the third belongs to $ \mathrm{IET}^\bowtie \backslash\mathrm{IET}^\pm $. The fourth is a more "typical" element of $ \mathrm{PC}^ {\, \mathrm{\bowtie}}( \mathbf{S}) $. The value at breakpoints is not prescribed, as we consider group elements as defined up to finite indeterminacy
Figure 2.  Graphs of a 132-flip and a triple flip: in each case there are two hyper-clean lifts, choosing either the endpoints denoted as circles or dots
Figure 3.  Graphs of $ u $, $ v $, $ w $ and $ s $
[1]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[2]

Benjamin Weiss. Entropy and actions of sofic groups. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3375-3383. doi: 10.3934/dcdsb.2015.20.3375

[3]

Sébastien Ferenczi, Pascal Hubert. Rigidity of square-tiled interval exchange transformations. Journal of Modern Dynamics, 2019, 14: 153-177. doi: 10.3934/jmd.2019006

[4]

Luca Marchese. The Khinchin Theorem for interval-exchange transformations. Journal of Modern Dynamics, 2011, 5 (1) : 123-183. doi: 10.3934/jmd.2011.5.123

[5]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[6]

Jon Chaika, David Damanik, Helge Krüger. Schrödinger operators defined by interval-exchange transformations. Journal of Modern Dynamics, 2009, 3 (2) : 253-270. doi: 10.3934/jmd.2009.3.253

[7]

Jacek Brzykcy, Krzysztof Frączek. Disjointness of interval exchange transformations from systems of probabilistic origin. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 53-73. doi: 10.3934/dcds.2010.27.53

[8]

Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35

[9]

Jon Chaika, Alex Eskin. Möbius disjointness for interval exchange transformations on three intervals. Journal of Modern Dynamics, 2019, 14: 55-86. doi: 10.3934/jmd.2019003

[10]

Nir Avni. Spectral and mixing properties of actions of amenable groups. Electronic Research Announcements, 2005, 11: 57-63.

[11]

Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779

[12]

Nancy Guelman, Isabelle Liousse. Actions of Baumslag-Solitar groups on surfaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1945-1964. doi: 10.3934/dcds.2013.33.1945

[13]

Richard Miles, Michael Björklund. Entropy range problems and actions of locally normal groups. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 981-989. doi: 10.3934/dcds.2009.25.981

[14]

Andrei Török. Rigidity of partially hyperbolic actions of property (T) groups. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 193-208. doi: 10.3934/dcds.2003.9.193

[15]

Anatole Katok, Federico Rodriguez Hertz. Arithmeticity and topology of smooth actions of higher rank abelian groups. Journal of Modern Dynamics, 2016, 10: 135-172. doi: 10.3934/jmd.2016.10.135

[16]

Brandon Seward. Krieger's finite generator theorem for actions of countable groups Ⅱ. Journal of Modern Dynamics, 2019, 15: 1-39. doi: 10.3934/jmd.2019012

[17]

Juan Alonso, Nancy Guelman, Juliana Xavier. Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo)-Anosov elements. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1817-1827. doi: 10.3934/dcds.2015.35.1817

[18]

Alexander Gorodnik, Theron Hitchman, Ralf Spatzier. Regularity of conjugacies of algebraic actions of Zariski-dense groups. Journal of Modern Dynamics, 2008, 2 (3) : 509-540. doi: 10.3934/jmd.2008.2.509

[19]

Danijela Damjanovic and Anatole Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Research Announcements, 2004, 10: 142-154.

[20]

Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (96)
  • HTML views (334)
  • Cited by (0)

Other articles
by authors

[Back to Top]