Article Contents
Article Contents

# Realizations of groups of piecewise continuous transformations of the circle

• We study the near action of the group $\mathrm{PC}$ of piecewise continuous self-transformations of the circle. Elements of this group are only defined modulo indeterminacy on a finite subset, which raises the question of realizability: a subgroup of $\mathrm{PC}$ is said to be realizable if it can be lifted to a group of permutations of the circle.

We prove that every finitely generated abelian subgroup of $\mathrm{PC}$ is realizable. We show that this is not true for arbitrary subgroups, by exhibiting a non-realizable finitely generated subgroup of the group of interval exchanges with flips.

The group of (oriented) interval exchanges is obviously realizable (choosing the unique left-continuous representative). We show that it has only two realizations (up to conjugation by a finitely supported permutation): the left and right-continuous ones.

Mathematics Subject Classification: Primary: 37E05; Secondary: 20B27, 20F65, 22F05, 37C85.

 Citation:

• Figure 1.  Examples of graphs of elements of $\mathrm{PC}^ {\, \mathrm{\bowtie}}( \mathbf{S})$ (parameterizing the circle as an interval). The first belongs to $\mathrm{IET}^+$; the second belongs to $\mathrm{IET}^-$; the third belongs to $\mathrm{IET}^\bowtie \backslash\mathrm{IET}^\pm$. The fourth is a more "typical" element of $\mathrm{PC}^ {\, \mathrm{\bowtie}}( \mathbf{S})$. The value at breakpoints is not prescribed, as we consider group elements as defined up to finite indeterminacy

Figure 2.  Graphs of a 132-flip and a triple flip: in each case there are two hyper-clean lifts, choosing either the endpoints denoted as circles or dots

Figure 3.  Graphs of $u$, $v$, $w$ and $s$

•  [1] P. Arnoux, Échanges d'intervalles et flots sur les surfaces, in Ergodic Theory (Sem., Les Plans-sur-Bex, 1980) (French), Monograph. Enseign. Math., 29, Univ. Genève, Geneva, 1981, 5–38. [2] P. Arnoux, Un invariant pour les échanges d'intervalles et les flots sur les surfaces, Thèse 3e cycle, Fac. Sci. Reims, 1981. [3] M. Boshernitzan, Subgroup of interval exchanges generated by torsion elements and rotations, Proc. Amer. Math. Soc., 144 (2016), 2565-2573.  doi: 10.1090/proc/12958. [4] Y. Cornulier, Groupes pleins-topologiques (d'après Matui, Juschenko, Monod, $\dots$), Astérisque No. 361 (2014), Exp. No. 1064, ⅷ, 183–223. [5] Y. Cornulier, Commensurating actions for groups of piecewise continuous transformations, arXiv: 1803.08572, (2018). [6] Y. Cornulier, Near actions, arXiv: 1901.05065, (2019). [7] F. Dahmani, K. Fujiwara and V. Guirardel, Free groups of interval exchange transformations are rare, Groups Geom. Dyn., 7 (2013), 883-910.  doi: 10.4171/GGD/209. [8] F. Dahmani, K. Fujiwara and V. Guirardel, Solvable groups of interval exchange transformations, to appear in Ann. Fac. Sci. Toulouse, arXiv: 1701.00377, 2018. [9] K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math. (2), 178 (2013), 775–787. doi: 10.4007/annals.2013.178.2.7. [10] K. Juschenko, N. Matte Bon, N. Monod and M. de la Salle, Extensive amenability and an application to interval exchanges, Ergodic Theory Dynam. Systems, 38 (2018), 195-219.  doi: 10.1017/etds.2016.32. [11] M. Keane, Interval exchange transformations, Math. Z., 141 (1975), 25-31.  doi: 10.1007/BF01236981. [12] G. Mackey, Point realizations of transformation groups, Illinois J. Math., 6 (1962), 327-335.  doi: 10.1215/ijm/1255632330. [13] C. F. Novak, Discontinuity-growth of interval-exchange maps, J. Mod. Dyn., 3 (2009), 379-405.  doi: 10.3934/jmd.2009.3.379. [14] W. Scott and L. Sonneborn, Translations of infinite subsets of a group, Colloq. Math., 10 (1963), 217-220.  doi: 10.4064/cm-10-2-217-220. [15] J. B. Wagoner, Delooping classifying spaces in algebraic K-theory, Topology, 11 (1972), 349-370.  doi: 10.1016/0040-9383(72)90031-6.

Figures(3)