We present a separation property for the gaps in the length spectrum of a compact Riemannian manifold with negative curvature. In arbitrary small neighborhoods of the metric for some suitable topology, we show that there are negatively curved metrics with a length spectrum exponentially separated from below. This property was previously known to be false generically.
Citation: |
[1] |
R. Abraham, Bumpy Metrics, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) pp. 1–3, Amer. Math. Soc., Providence, R.I, 1970.,
doi: 10.1090/pspum/014/0271994.![]() ![]() ![]() |
[2] |
N. Anantharaman, Precise counting results for closed orbits of Anosov flows, Ann. Sci. École Norm. Sup. (4), 33 (2000), 33-56.
doi: 10.1016/S0012-9593(00)00102-6.![]() ![]() ![]() |
[3] |
Y. Colin de Verdière, Spectre du laplacien et longueurs des géodésiques périodiques. I, II, Compositio Math., 27 (1973), 83–106; Ibid., 27 (1973), 159–184.
![]() ![]() |
[4] |
J. Chazarain, Formule de Poisson pour les variétés riemanniennes, Invent. Math., 24 (1974), 65-82.
doi: 10.1007/BF01418788.![]() ![]() ![]() |
[5] |
J. J. Duistermaat and V. Guillemin, The spectrum of positive eliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39-79.
doi: 10.1007/BF01405172.![]() ![]() ![]() |
[6] |
D. Dolgopyat and D. Jakobson, On small gaps in the length spectrum, J. Mod. Dyn., 10 (2016), 339-352.
doi: 10.3934/jmd.2016.10.339.![]() ![]() ![]() |
[7] |
D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math., 147 (1998), 357-390.
doi: 10.2307/121012.![]() ![]() ![]() |
[8] |
P. Eberlein, When is a geodesic flow of Anosov type? I, II, J. Differential Geometry, 8 (1973), 437–463; Ibid., 8 (1973), 565–577.
doi: 10.4310/jdg/1214431801.![]() ![]() ![]() |
[9] |
H. Garland and M. S. Raghunathan, Fundamental domains for lattices in (R-)rank $1$ semisimple Lie groups, Ann. of Math. (2), 92 (1970), 279-326.
doi: 10.2307/1970838.![]() ![]() ![]() |
[10] |
L. Guillopé and M. Zworski, The wave trace for riemann surfaces, Geom. Funct. Anal., 9 (1999), 1156-1168.
doi: 10.1007/s000390050110.![]() ![]() ![]() |
[11] |
D. Jakobson and I. Polterovich, Estimates from below for the spectral function and for the remainder in local Weyl's law, Geom. Funct. Anal., 17 (2007), 806-838.
doi: 10.1007/s00039-007-0605-z.![]() ![]() ![]() |
[12] |
D. Jakobson, I. Polterovich and J. Toth, A lower bound for the remainder in weyl's law on negatively curved surfaces, Int. Math. Res. Not., (2008), Art. ID rnm142, 38 pp.
doi: 10.1093/imrn/rnm142.![]() ![]() ![]() |
[13] |
H. Karcher, Riemannian comparison constructions, Global Differential Geometry, MAA Stud. Math., Math. Assoc. America, Washington, DC, 27 (1989), 170–222.
![]() ![]() |
[14] |
A. Katok and B. Hasselbladt, Introduction to the Theory of Modern Dynamical Systems, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511809187.![]() ![]() ![]() |
[15] |
G. A. Margulis, Certain applications of ergodic theory to the investigation of manifolds of negative curvature, Funkcional. Anal. i Priložen, 3 (1969), 89-90.
![]() ![]() |
[16] |
G. Margulis, On some Aspects of the Theory of Anosov Systems, with a survey by R. Sharp, Springer, 2004.
doi: 10.1007/978-3-662-09070-1.![]() ![]() ![]() |
[17] |
V. Petkov, Lower bounds on the number of scattering poles for several strictly convex obstacles, Asymptot. Anal., 30 (2002), 81-91.
![]() ![]() |
[18] |
W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187-188 (1990), 268pp.
![]() ![]() |
[19] |
M. Pollicott and R. Sharp, Error terms for closed orbits of hyperbolic flows, Ergodic Theory Dynam. Systems, 21 (2001), 545-562.
doi: 10.1017/S0143385701001274.![]() ![]() ![]() |
[20] |
V. Petkov and L. Stoyanov, Distribution of periods of closed trajectories in exponentially shrinking intervals, Comm. Math. Phys., 310 (2012), 675-704.
doi: 10.1007/s00220-012-1419-x.![]() ![]() ![]() |
[21] |
E. Schenck, Resonances near the real axis for manifolds with hyperbolic trapped sets, Amer. J. Math., 141 (2019), 757-812.
doi: 10.1353/ajm.2019.0016.![]() ![]() ![]() |