[1]
|
D. Aulicino, Teichmüller discs with completely degenerate Kontsevich-Zorich spectrum, Comment. Math. Helv., 90 (2015), 573-643.
doi: 10.4171/CMH/365.
|
[2]
|
D. Aulicino, Affine invariant submanifolds with completely degenerate Kontsevich-Zorich spectrum, Ergodic Theory Dynam. Systems, 38 (2018), 10-33.
doi: 10.1017/etds.2016.26.
|
[3]
|
David Aulicino and Chaya Norton, Shimura–Teichmüller curves in genus 5, Sage Notebooks, https://github.com/davidaulicino/ST5.
|
[4]
|
A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture, Acta Math., 198 (2007), 1-56.
doi: 10.1007/s11511-007-0012-1.
|
[5]
|
A. Eskin, M. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. Inst. Hautes \'Etudes Sci., 120 (2014), 207-333.
doi: 10.1007/s10240-013-0060-3.
|
[6]
|
A. Eskin, M. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the SL $(2, \mathbb{R})$ action on moduli space, Ann. of Math. (2), 182 (2015), 673-721.
doi: 10.4007/annals.2015.182.2.7.
|
[7]
|
J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973.
|
[8]
|
G. Forni and C. Matheus, An example of a Teichmüller disk in genus 4 with degenerate Kontsevich-Zorich spectrum, preprint, arXiv: 0810.0023v1 (2008).
|
[9]
|
G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers, J. Mod. Dyn., 5 (2011), 285-318.
doi: 10.3934/jmd.2011.5.285.
|
[10]
|
G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2), 155 (2002), 1-103.
doi: 10.2307/3062150.
|
[11]
|
G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle, in Handbook of Dynamical Systems, Vol. 1B, Elsevier B. V., Amsterdam, 2006,549–580.
doi: 10.1016/S1874-575X(06)80033-0.
|
[12]
|
S. Grushevsky, I. Krichever and C. Norton, Real-normalized differentials: Limits on stable curves, Russian Math. Surveys, 74 (2019), 265-324.
doi: 10.4213/rm9877.
|
[13]
|
X. Hu and C. Norton, General variational formulas for Abelian differentials, Int. Math. Res. Not. IMRN (2020), no. 12, 3540–3581.
doi: 10.1093/imrn/rny106.
|
[14]
|
F. Herrlich and G. Schmithüsen, An extraordinary origami curve, Math. Nachr., 281 (2008), 219-237.
doi: 10.1002/mana.200510597.
|
[15]
|
H. Masur, Extension of the Weil-Petersson metric to the boundary of Teichmuller space, Duke Math. J., 43 (1976), 623-635.
|
[16]
|
H. Masur, Closed trajectories for quadratic differentials with an application to billiards, Duke Math. J., 53 (1986), 307-314.
doi: 10.1215/S0012-7094-86-05319-6.
|
[17]
|
M. Möller, Shimura and Teichmüller curves, J. Mod. Dyn., 5 (2011), 1-32.
doi: 10.3934/jmd.2011.5.1.
|
[18]
|
C. Matheus and J.-C. Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn., 4 (2010), 453-486.
doi: 10.3934/jmd.2010.4.453.
|
[19]
|
Yu. L. Rodin, The Riemann Boundary Problem on Riemann Surfaces, Mathematics and its Applications (Soviet Series), vol. 16, D. Reidel Publishing Co., Dordrecht, 1988.
doi: 10.1007/978-94-009-2885-5.
|
[20]
|
J. Smillie and B. Weiss, Characterizations of lattice surfaces, Invent. Math., 180 (2010), 535-557.
doi: 10.1007/s00222-010-0236-0.
|
[21]
|
W. A. Veech, The Teichmüller geodesic flow, Ann. of Math. (2), 124 (1986), 441-530.
doi: 10.2307/2007091.
|
[22]
|
W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.
doi: 10.1007/BF01388890.
|
[23]
|
Ya. B. Vorobets, Plane structures and billiards in rational polygons: The Veech alternative, Uspekhi Mat. Nauk, 51 (1996), 3-42.
doi: 10.1070/RM1996v051n05ABEH002993.
|
[24]
|
A. Yamada, Precise variational formulas for abelian differentials, Kodai Math. J., 3 (1980), 114-143.
|