2020, 16: 255-288. doi: 10.3934/jmd.2020009

Shimura–Teichmüller curves in genus 5

1. 

Department of Mathematics, Brooklyn College and CUNY Graduate Center, 2900 Bedford Avenue, Brooklyn, NY 11210-2889, USA

2. 

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Received  November 18, 2019 Revised  April 29, 2020

Fund Project: Partially supported by the National Science Foundation under Award Nos. DMS - 1738381, DMS - 1600360, and PSC-CUNY Grant # 61639-00 49

We prove that there are no Shimura–Teichmüller curves generated by genus five translation surfaces, thereby completing the classification of Shimura–Teichmüller curves in general. This was conjectured by Möller in his original work introducing Shimura–Teichmüller curves. Moreover, the property of being a Shimura–Teichmüller curve is equivalent to having completely degenerate Kontsevich–Zorich spectrum.

The main new ingredient comes from the work of Hu and the second named author, which facilitates calculations of higher order terms in the period matrix with respect to plumbing coordinates. A large computer search is implemented to exclude the remaining cases, which must be performed in a very specific way to be computationally feasible.

Citation: David Aulicino, Chaya Norton. Shimura–Teichmüller curves in genus 5. Journal of Modern Dynamics, 2020, 16: 255-288. doi: 10.3934/jmd.2020009
References:
[1]

D. Aulicino, Teichmüller discs with completely degenerate Kontsevich-Zorich spectrum, Comment. Math. Helv., 90 (2015), 573-643.  doi: 10.4171/CMH/365.  Google Scholar

[2]

D. Aulicino, Affine invariant submanifolds with completely degenerate Kontsevich-Zorich spectrum, Ergodic Theory Dynam. Systems, 38 (2018), 10-33.  doi: 10.1017/etds.2016.26.  Google Scholar

[3]

David Aulicino and Chaya Norton, Shimura–Teichmüller curves in genus 5, Sage Notebooks, https://github.com/davidaulicino/ST5. Google Scholar

[4]

A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture, Acta Math., 198 (2007), 1-56.  doi: 10.1007/s11511-007-0012-1.  Google Scholar

[5]

A. EskinM. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. Inst. Hautes \'Etudes Sci., 120 (2014), 207-333.  doi: 10.1007/s10240-013-0060-3.  Google Scholar

[6]

A. EskinM. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the SL $(2, \mathbb{R})$ action on moduli space, Ann. of Math. (2), 182 (2015), 673-721.  doi: 10.4007/annals.2015.182.2.7.  Google Scholar

[7]

J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973.  Google Scholar

[8]

G. Forni and C. Matheus, An example of a Teichmüller disk in genus 4 with degenerate Kontsevich-Zorich spectrum, preprint, arXiv: 0810.0023v1 (2008). Google Scholar

[9]

G. ForniC. Matheus and A. Zorich, Square-tiled cyclic covers, J. Mod. Dyn., 5 (2011), 285-318.  doi: 10.3934/jmd.2011.5.285.  Google Scholar

[10]

G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2), 155 (2002), 1-103.  doi: 10.2307/3062150.  Google Scholar

[11]

G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle, in Handbook of Dynamical Systems, Vol. 1B, Elsevier B. V., Amsterdam, 2006,549–580. doi: 10.1016/S1874-575X(06)80033-0.  Google Scholar

[12]

S. GrushevskyI. Krichever and C. Norton, Real-normalized differentials: Limits on stable curves, Russian Math. Surveys, 74 (2019), 265-324.  doi: 10.4213/rm9877.  Google Scholar

[13]

X. Hu and C. Norton, General variational formulas for Abelian differentials, Int. Math. Res. Not. IMRN (2020), no. 12, 3540–3581. doi: 10.1093/imrn/rny106.  Google Scholar

[14]

F. Herrlich and G. Schmithüsen, An extraordinary origami curve, Math. Nachr., 281 (2008), 219-237.  doi: 10.1002/mana.200510597.  Google Scholar

[15]

H. Masur, Extension of the Weil-Petersson metric to the boundary of Teichmuller space, Duke Math. J., 43 (1976), 623-635.   Google Scholar

[16]

H. Masur, Closed trajectories for quadratic differentials with an application to billiards, Duke Math. J., 53 (1986), 307-314.  doi: 10.1215/S0012-7094-86-05319-6.  Google Scholar

[17]

M. Möller, Shimura and Teichmüller curves, J. Mod. Dyn., 5 (2011), 1-32.  doi: 10.3934/jmd.2011.5.1.  Google Scholar

[18]

C. Matheus and J.-C. Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn., 4 (2010), 453-486.  doi: 10.3934/jmd.2010.4.453.  Google Scholar

[19]

Yu. L. Rodin, The Riemann Boundary Problem on Riemann Surfaces, Mathematics and its Applications (Soviet Series), vol. 16, D. Reidel Publishing Co., Dordrecht, 1988. doi: 10.1007/978-94-009-2885-5.  Google Scholar

[20]

J. Smillie and B. Weiss, Characterizations of lattice surfaces, Invent. Math., 180 (2010), 535-557.  doi: 10.1007/s00222-010-0236-0.  Google Scholar

[21]

W. A. Veech, The Teichmüller geodesic flow, Ann. of Math. (2), 124 (1986), 441-530.  doi: 10.2307/2007091.  Google Scholar

[22]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.  doi: 10.1007/BF01388890.  Google Scholar

[23]

Ya. B. Vorobets, Plane structures and billiards in rational polygons: The Veech alternative, Uspekhi Mat. Nauk, 51 (1996), 3-42.  doi: 10.1070/RM1996v051n05ABEH002993.  Google Scholar

[24]

A. Yamada, Precise variational formulas for abelian differentials, Kodai Math. J., 3 (1980), 114-143.   Google Scholar

show all references

References:
[1]

D. Aulicino, Teichmüller discs with completely degenerate Kontsevich-Zorich spectrum, Comment. Math. Helv., 90 (2015), 573-643.  doi: 10.4171/CMH/365.  Google Scholar

[2]

D. Aulicino, Affine invariant submanifolds with completely degenerate Kontsevich-Zorich spectrum, Ergodic Theory Dynam. Systems, 38 (2018), 10-33.  doi: 10.1017/etds.2016.26.  Google Scholar

[3]

David Aulicino and Chaya Norton, Shimura–Teichmüller curves in genus 5, Sage Notebooks, https://github.com/davidaulicino/ST5. Google Scholar

[4]

A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of the Zorich-Kontsevich conjecture, Acta Math., 198 (2007), 1-56.  doi: 10.1007/s11511-007-0012-1.  Google Scholar

[5]

A. EskinM. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. Inst. Hautes \'Etudes Sci., 120 (2014), 207-333.  doi: 10.1007/s10240-013-0060-3.  Google Scholar

[6]

A. EskinM. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the SL $(2, \mathbb{R})$ action on moduli space, Ann. of Math. (2), 182 (2015), 673-721.  doi: 10.4007/annals.2015.182.2.7.  Google Scholar

[7]

J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973.  Google Scholar

[8]

G. Forni and C. Matheus, An example of a Teichmüller disk in genus 4 with degenerate Kontsevich-Zorich spectrum, preprint, arXiv: 0810.0023v1 (2008). Google Scholar

[9]

G. ForniC. Matheus and A. Zorich, Square-tiled cyclic covers, J. Mod. Dyn., 5 (2011), 285-318.  doi: 10.3934/jmd.2011.5.285.  Google Scholar

[10]

G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2), 155 (2002), 1-103.  doi: 10.2307/3062150.  Google Scholar

[11]

G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle, in Handbook of Dynamical Systems, Vol. 1B, Elsevier B. V., Amsterdam, 2006,549–580. doi: 10.1016/S1874-575X(06)80033-0.  Google Scholar

[12]

S. GrushevskyI. Krichever and C. Norton, Real-normalized differentials: Limits on stable curves, Russian Math. Surveys, 74 (2019), 265-324.  doi: 10.4213/rm9877.  Google Scholar

[13]

X. Hu and C. Norton, General variational formulas for Abelian differentials, Int. Math. Res. Not. IMRN (2020), no. 12, 3540–3581. doi: 10.1093/imrn/rny106.  Google Scholar

[14]

F. Herrlich and G. Schmithüsen, An extraordinary origami curve, Math. Nachr., 281 (2008), 219-237.  doi: 10.1002/mana.200510597.  Google Scholar

[15]

H. Masur, Extension of the Weil-Petersson metric to the boundary of Teichmuller space, Duke Math. J., 43 (1976), 623-635.   Google Scholar

[16]

H. Masur, Closed trajectories for quadratic differentials with an application to billiards, Duke Math. J., 53 (1986), 307-314.  doi: 10.1215/S0012-7094-86-05319-6.  Google Scholar

[17]

M. Möller, Shimura and Teichmüller curves, J. Mod. Dyn., 5 (2011), 1-32.  doi: 10.3934/jmd.2011.5.1.  Google Scholar

[18]

C. Matheus and J.-C. Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn., 4 (2010), 453-486.  doi: 10.3934/jmd.2010.4.453.  Google Scholar

[19]

Yu. L. Rodin, The Riemann Boundary Problem on Riemann Surfaces, Mathematics and its Applications (Soviet Series), vol. 16, D. Reidel Publishing Co., Dordrecht, 1988. doi: 10.1007/978-94-009-2885-5.  Google Scholar

[20]

J. Smillie and B. Weiss, Characterizations of lattice surfaces, Invent. Math., 180 (2010), 535-557.  doi: 10.1007/s00222-010-0236-0.  Google Scholar

[21]

W. A. Veech, The Teichmüller geodesic flow, Ann. of Math. (2), 124 (1986), 441-530.  doi: 10.2307/2007091.  Google Scholar

[22]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.  doi: 10.1007/BF01388890.  Google Scholar

[23]

Ya. B. Vorobets, Plane structures and billiards in rational polygons: The Veech alternative, Uspekhi Mat. Nauk, 51 (1996), 3-42.  doi: 10.1070/RM1996v051n05ABEH002993.  Google Scholar

[24]

A. Yamada, Precise variational formulas for abelian differentials, Kodai Math. J., 3 (1980), 114-143.   Google Scholar

Figure 1.  Schematic of the surface coordinates used in the algorithm: Circle vertices represent zeros and square vertices could represent zeros or regular points
Figure 2.  Proof of Corollary 5.10: The shaded region on the top of $ C_2 $ represents the admissible locations of $ \tau_0 $
Table 1.  List of Strata Possibly Containing ST-Curves and Values of $ d_{opt} $: Dashed lines separate genus
Stratum $ d_{opt} $
$ \mathscr{H}(1, 1, 1, 1) $ $ 2 $
$ \mathscr{H}(1, 1, 1, 1, 1, 1) $ $ 4 $
$ \mathscr{H}(2, 2, 2) $ $ 3 $
$ \mathscr{H}(1, 1, 1, 1, 1, 1,2) $ $ 36 $
$ \mathscr{H}(1, 1, 1, 1, 2,2) $ $ 18 $
$ \mathscr{H}(1, 1, 2, 2,2) $ $ 12 $
$ \mathscr{H}(2, 2, 2,2) $ $ 9 $
$ \mathscr{H}(1, 1, 1, 1, 1,3) $ $ 16 $
$ \mathscr{H}(1, 1, 3,3) $ $ 8 $
$ \mathscr{H}(1, 1, 1, 1,4) $ $ 10 $
Stratum $ d_{opt} $
$ \mathscr{H}(1, 1, 1, 1) $ $ 2 $
$ \mathscr{H}(1, 1, 1, 1, 1, 1) $ $ 4 $
$ \mathscr{H}(2, 2, 2) $ $ 3 $
$ \mathscr{H}(1, 1, 1, 1, 1, 1,2) $ $ 36 $
$ \mathscr{H}(1, 1, 1, 1, 2,2) $ $ 18 $
$ \mathscr{H}(1, 1, 2, 2,2) $ $ 12 $
$ \mathscr{H}(2, 2, 2,2) $ $ 9 $
$ \mathscr{H}(1, 1, 1, 1, 1,3) $ $ 16 $
$ \mathscr{H}(1, 1, 3,3) $ $ 8 $
$ \mathscr{H}(1, 1, 1, 1,4) $ $ 10 $
[1]

Artur Avila, Carlos Matheus, Jean-Christophe Yoccoz. The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces. Journal of Modern Dynamics, 2019, 14: 21-54. doi: 10.3934/jmd.2019002

[2]

Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135

[3]

Fei Yu, Kang Zuo. Weierstrass filtration on Teichmüller curves and Lyapunov exponents. Journal of Modern Dynamics, 2013, 7 (2) : 209-237. doi: 10.3934/jmd.2013.7.209

[4]

Rodolfo Gutiérrez-Romo. A family of quaternionic monodromy groups of the Kontsevich–Zorich cocycle. Journal of Modern Dynamics, 2019, 14: 227-242. doi: 10.3934/jmd.2019008

[5]

Alex Wright. Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces. Journal of Modern Dynamics, 2012, 6 (3) : 405-426. doi: 10.3934/jmd.2012.6.405

[6]

Giovanni Forni. A geometric criterion for the nonuniform hyperbolicity of the Kontsevich--Zorich cocycle. Journal of Modern Dynamics, 2011, 5 (2) : 355-395. doi: 10.3934/jmd.2011.5.355

[7]

Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489

[8]

Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393

[9]

David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477

[10]

Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841

[11]

Martin Möller. Shimura and Teichmüller curves. Journal of Modern Dynamics, 2011, 5 (1) : 1-32. doi: 10.3934/jmd.2011.5.1

[12]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[13]

Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271

[14]

Jon Fickenscher. A combinatorial proof of the Kontsevich-Zorich-Boissy classification of Rauzy classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1983-2025. doi: 10.3934/dcds.2016.36.1983

[15]

Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209

[16]

Ferrán Valdez. Veech groups, irrational billiards and stable abelian differentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1055-1063. doi: 10.3934/dcds.2012.32.1055

[17]

Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004

[18]

Guizhen Cui, Yunping Jiang, Anthony Quas. Scaling functions and Gibbs measures and Teichmüller spaces of circle endomorphisms. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 535-552. doi: 10.3934/dcds.1999.5.535

[19]

Chi Po Choi, Xianfeng Gu, Lok Ming Lui. Subdivision connectivity remeshing via Teichmüller extremal map. Inverse Problems & Imaging, 2017, 11 (5) : 825-855. doi: 10.3934/ipi.2017039

[20]

Matteo Costantini, André Kappes. The equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve. Journal of Modern Dynamics, 2017, 11: 17-41. doi: 10.3934/jmd.2017002

2019 Impact Factor: 0.465

Article outline

Figures and Tables

[Back to Top]