
-
Previous Article
The 2019 Michael Brin Prize in Dynamical Systems
- JMD Home
- This Volume
-
Next Article
Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds
Ergodicity and partial hyperbolicity on Seifert manifolds
1. | School of Mathematics, Monash University, Victoria 3800, Australia |
2. | Department of Mathematics and SUSTech International Center for Mathematics, Southern University of Science and Technology, 1088 Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, China |
We show that conservative partially hyperbolic diffeomorphism isotopic to the identity on Seifert 3-manifolds are ergodic.
References:
[1] |
A. Avila, S. Crovisier and A. Wilkinson, $C^1$ density of stable ergodicity, arXiv: 1709.04983. Google Scholar |
[2] |
T. Barthelmé, S. R. Fenley, S. Frankel and R. Potrie, Partially hyperbolic diffeomorphisms homotopic to the identity on 3-manifolds, preprint, arXiv: 1801.00214. Google Scholar |
[3] |
C. Bonatti, A. Gogolev, A. Hammerlindl and R. Potrie, Anomolous partially hyperbolic diffeomorphisms III: Abundance and incoherence, preprint, arXiv: 1706.04962. Google Scholar |
[4] |
C. Bonatti, L. J. Díaz and R. Ures,
Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu, 1 (2002), 513-541.
doi: 10.1017/S1474748002000142. |
[5] |
C. Bonatti and A. Wilkinson,
Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, 44 (2005), 475-508.
doi: 10.1016/j.top.2004.10.009. |
[6] |
M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004.
![]() |
[7] |
M. I. Brin and J. B. Pesin,
Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212.
|
[8] |
M. Brittenham,
Essential laminations in Seifert-fibered spaces, Topology, 32 (1993), 61-85.
doi: 10.1016/0040-9383(93)90038-W. |
[9] |
M. Brunella,
Expansive flows on Seifert manifolds and on torus bundles, Bol. Soc. Brasil Mat., 24 (1993), 89-104.
doi: 10.1007/BF01231697. |
[10] |
K. Burns and A. Wilkinson,
On the ergodicity of partially hyperbolic systems, Ann. of Math., 171 (2010), 451-489.
doi: 10.4007/annals.2010.171.451. |
[11] |
P. D. Carrasco, F. R. Hertz, J. R. Hertz and R. Ures,
Partially hyperbolic dynamics in dimension three, Ergodic Theory Dynam. Systems, 38 (2018), 2801-2837.
doi: 10.1017/etds.2016.142. |
[12] |
B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012.
![]() |
[13] |
S. R. Fenley,
Regulating flows, topology of foliations and rigidity, Trans. Amer. Math. Soc., 357 (2005), 4957-5000.
doi: 10.1090/S0002-9947-05-03644-5. |
[14] |
S. R. Fenley,
Rigidity of pseudo-Anosov flows transverse to $\Bbb{R}$-covered foliations, Comment. Math. Helv., 88 (2013), 643-676.
doi: 10.4171/CMH/299. |
[15] |
S. R. Fenley and R. Potrie, Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds, preprint, arXiv: 1809.02284. Google Scholar |
[16] |
J. Franks, Anosov diffeomorphisms, Amer. Math. Soc., 14 (1970) 61–93. |
[17] |
S. Gan and Y. Shi,
Rigidity of center Lyapunov exponents and $su$-integrability, Comment. Math. Helv., 95 (2020), 569-592.
doi: 10.4171/CMH/497. |
[18] |
É. Ghys,
Groups acting on the circle, Enseign. Math., 47 (2001), 329-407.
|
[19] |
M. Grayson, C. Pugh and M. Shub,
Stably ergodic diffeomorphisms, Ann. of Math., 140 (1994), 295-329.
doi: 10.2307/2118602. |
[20] |
A. Hammerlindl,
Ergodic components of partially hyperbolic systems, Comment. Math. Helv., 92 (2017), 131-184.
doi: 10.4171/CMH/409. |
[21] |
A. Hammerlindl and R. Potrie,
Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group, J. Topol., 8 (2015), 842-870.
doi: 10.1112/jtopol/jtv009. |
[22] |
A. Hammerlindl, R. Potrie and M. Shannon,
Seifert manifolds admitting partially hyperbolic diffeomorphisms, J. Mod. Dyn., 12 (2018), 193-222.
doi: 10.3934/jmd.2018008. |
[23] |
A. Hammerlindl and R. Ures, Ergodicity and partial hyperbolicity on the 3-torus, Commun. Contemp. Math., 16 (2014), 1350038, 22 pp.
doi: 10.1142/S0219199713500387. |
[24] |
A. Haefliger,
Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16 (1962), 367-397.
|
[25] |
G. Hector and U. Hirsch, Introduction to the geometry of foliations. Part B. Foliations of codimension one, Aspects of Mathematics, E3, Friedr. Vieweg & Sohn, Braunschweig, 1983.
doi: 10.1007/978-3-322-85619-7. |
[26] |
M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, (French) Inst. Hautes études Sci. Publ. Math., 49 (1979), 5–233. |
[27] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. |
[28] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes études Sci. Publ. Math., 51 (1980), 137–173. |
[29] |
K. Mann, Rigidity and flexibility of group actions on the circle. Handbook of group actions. Vol. IV, Adv. Lect. Math. (ALM), 41, Int. Press, omerville, MA, 2018.
![]() |
[30] |
P. Mendes,
On Anosov diffeomorphisms on the plane, Proc. Amer. Math. Soc., 63 (1977), 231-235.
doi: 10.1090/S0002-9939-1977-0461585-X. |
[31] |
J. Milnor,
On the existence of a connection with curvature zero, Comment. Math. Helv., 32 (1958), 215-223.
doi: 10.1007/BF02564579. |
[32] |
F. R. Hertz, M. A. R. Hertz and R. Ures,
Partial hyperbolicity and ergodicity in dimension three, J. Mod. Dyn., 2 (2008), 187-208.
doi: 10.3934/jmd.2008.2.187. |
[33] |
F. R. Hertz, M. A. R. Hertz and R. Ures, Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms, Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007,103–109. |
[34] |
F. R. Hertz, M. A. R. Hertz and R. Ures,
Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381.
doi: 10.1007/s00222-007-0100-z. |
[35] |
F. R. Hertz, M. A. R. Hertz and R. Ures,
Tori with hyperbolic dynamics in 3-manifolds, J. Mod. Dyn., 5 (2011), 185-202.
doi: 10.3934/jmd.2011.5.185. |
[36] |
F. R. Hertz, J. R. Hertz and R. Ures,
Center-unstable foliations do not have compact leaves, Math. Res. Lett., 23 (2016), 1819-1832.
doi: 10.4310/MRL.2016.v23.n6.a11. |
[37] |
R. Saghin and J. Yang, personal communication., Google Scholar |
[38] |
P. Scott,
The geometries of $3$-manifolds, Bull. London Math. Soc., 15 (1983), 401-487.
doi: 10.1112/blms/15.5.401. |
[39] |
J. Zhang, Partially hyperbolic diffeomorphisms with one-dimensional neutral center on 3-manifolds, preprint, arXiv: 1701.06176. Google Scholar |
show all references
References:
[1] |
A. Avila, S. Crovisier and A. Wilkinson, $C^1$ density of stable ergodicity, arXiv: 1709.04983. Google Scholar |
[2] |
T. Barthelmé, S. R. Fenley, S. Frankel and R. Potrie, Partially hyperbolic diffeomorphisms homotopic to the identity on 3-manifolds, preprint, arXiv: 1801.00214. Google Scholar |
[3] |
C. Bonatti, A. Gogolev, A. Hammerlindl and R. Potrie, Anomolous partially hyperbolic diffeomorphisms III: Abundance and incoherence, preprint, arXiv: 1706.04962. Google Scholar |
[4] |
C. Bonatti, L. J. Díaz and R. Ures,
Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu, 1 (2002), 513-541.
doi: 10.1017/S1474748002000142. |
[5] |
C. Bonatti and A. Wilkinson,
Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, 44 (2005), 475-508.
doi: 10.1016/j.top.2004.10.009. |
[6] |
M. Brin, D. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004.
![]() |
[7] |
M. I. Brin and J. B. Pesin,
Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212.
|
[8] |
M. Brittenham,
Essential laminations in Seifert-fibered spaces, Topology, 32 (1993), 61-85.
doi: 10.1016/0040-9383(93)90038-W. |
[9] |
M. Brunella,
Expansive flows on Seifert manifolds and on torus bundles, Bol. Soc. Brasil Mat., 24 (1993), 89-104.
doi: 10.1007/BF01231697. |
[10] |
K. Burns and A. Wilkinson,
On the ergodicity of partially hyperbolic systems, Ann. of Math., 171 (2010), 451-489.
doi: 10.4007/annals.2010.171.451. |
[11] |
P. D. Carrasco, F. R. Hertz, J. R. Hertz and R. Ures,
Partially hyperbolic dynamics in dimension three, Ergodic Theory Dynam. Systems, 38 (2018), 2801-2837.
doi: 10.1017/etds.2016.142. |
[12] |
B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012.
![]() |
[13] |
S. R. Fenley,
Regulating flows, topology of foliations and rigidity, Trans. Amer. Math. Soc., 357 (2005), 4957-5000.
doi: 10.1090/S0002-9947-05-03644-5. |
[14] |
S. R. Fenley,
Rigidity of pseudo-Anosov flows transverse to $\Bbb{R}$-covered foliations, Comment. Math. Helv., 88 (2013), 643-676.
doi: 10.4171/CMH/299. |
[15] |
S. R. Fenley and R. Potrie, Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds, preprint, arXiv: 1809.02284. Google Scholar |
[16] |
J. Franks, Anosov diffeomorphisms, Amer. Math. Soc., 14 (1970) 61–93. |
[17] |
S. Gan and Y. Shi,
Rigidity of center Lyapunov exponents and $su$-integrability, Comment. Math. Helv., 95 (2020), 569-592.
doi: 10.4171/CMH/497. |
[18] |
É. Ghys,
Groups acting on the circle, Enseign. Math., 47 (2001), 329-407.
|
[19] |
M. Grayson, C. Pugh and M. Shub,
Stably ergodic diffeomorphisms, Ann. of Math., 140 (1994), 295-329.
doi: 10.2307/2118602. |
[20] |
A. Hammerlindl,
Ergodic components of partially hyperbolic systems, Comment. Math. Helv., 92 (2017), 131-184.
doi: 10.4171/CMH/409. |
[21] |
A. Hammerlindl and R. Potrie,
Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group, J. Topol., 8 (2015), 842-870.
doi: 10.1112/jtopol/jtv009. |
[22] |
A. Hammerlindl, R. Potrie and M. Shannon,
Seifert manifolds admitting partially hyperbolic diffeomorphisms, J. Mod. Dyn., 12 (2018), 193-222.
doi: 10.3934/jmd.2018008. |
[23] |
A. Hammerlindl and R. Ures, Ergodicity and partial hyperbolicity on the 3-torus, Commun. Contemp. Math., 16 (2014), 1350038, 22 pp.
doi: 10.1142/S0219199713500387. |
[24] |
A. Haefliger,
Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16 (1962), 367-397.
|
[25] |
G. Hector and U. Hirsch, Introduction to the geometry of foliations. Part B. Foliations of codimension one, Aspects of Mathematics, E3, Friedr. Vieweg & Sohn, Braunschweig, 1983.
doi: 10.1007/978-3-322-85619-7. |
[26] |
M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, (French) Inst. Hautes études Sci. Publ. Math., 49 (1979), 5–233. |
[27] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. |
[28] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes études Sci. Publ. Math., 51 (1980), 137–173. |
[29] |
K. Mann, Rigidity and flexibility of group actions on the circle. Handbook of group actions. Vol. IV, Adv. Lect. Math. (ALM), 41, Int. Press, omerville, MA, 2018.
![]() |
[30] |
P. Mendes,
On Anosov diffeomorphisms on the plane, Proc. Amer. Math. Soc., 63 (1977), 231-235.
doi: 10.1090/S0002-9939-1977-0461585-X. |
[31] |
J. Milnor,
On the existence of a connection with curvature zero, Comment. Math. Helv., 32 (1958), 215-223.
doi: 10.1007/BF02564579. |
[32] |
F. R. Hertz, M. A. R. Hertz and R. Ures,
Partial hyperbolicity and ergodicity in dimension three, J. Mod. Dyn., 2 (2008), 187-208.
doi: 10.3934/jmd.2008.2.187. |
[33] |
F. R. Hertz, M. A. R. Hertz and R. Ures, Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms, Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007,103–109. |
[34] |
F. R. Hertz, M. A. R. Hertz and R. Ures,
Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381.
doi: 10.1007/s00222-007-0100-z. |
[35] |
F. R. Hertz, M. A. R. Hertz and R. Ures,
Tori with hyperbolic dynamics in 3-manifolds, J. Mod. Dyn., 5 (2011), 185-202.
doi: 10.3934/jmd.2011.5.185. |
[36] |
F. R. Hertz, J. R. Hertz and R. Ures,
Center-unstable foliations do not have compact leaves, Math. Res. Lett., 23 (2016), 1819-1832.
doi: 10.4310/MRL.2016.v23.n6.a11. |
[37] |
R. Saghin and J. Yang, personal communication., Google Scholar |
[38] |
P. Scott,
The geometries of $3$-manifolds, Bull. London Math. Soc., 15 (1983), 401-487.
doi: 10.1112/blms/15.5.401. |
[39] |
J. Zhang, Partially hyperbolic diffeomorphisms with one-dimensional neutral center on 3-manifolds, preprint, arXiv: 1701.06176. Google Scholar |

[1] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[2] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[3] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[4] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]