2020, 0: 331-348. doi: 10.3934/jmd.2020012

Ergodicity and partial hyperbolicity on Seifert manifolds

1. 

School of Mathematics, Monash University, Victoria 3800, Australia

2. 

Department of Mathematics and SUSTech International Center for Mathematics, Southern University of Science and Technology, 1088 Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, China

Received  July 19, 2019 Revised  September 17, 2020 Published  November 2020

Fund Project: This research was partially supported by the Australian Research Council. JRH: Partially supported by NSFC 11871262 and NSFC 11871394. RU: Partially supported by NSFC 11871262.

We show that conservative partially hyperbolic diffeomorphism isotopic to the identity on Seifert 3-manifolds are ergodic.

Citation: Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012
References:
[1]

A. Avila, S. Crovisier and A. Wilkinson, $C^1$ density of stable ergodicity, arXiv: 1709.04983. Google Scholar

[2]

T. Barthelmé, S. R. Fenley, S. Frankel and R. Potrie, Partially hyperbolic diffeomorphisms homotopic to the identity on 3-manifolds, preprint, arXiv: 1801.00214. Google Scholar

[3]

C. Bonatti, A. Gogolev, A. Hammerlindl and R. Potrie, Anomolous partially hyperbolic diffeomorphisms III: Abundance and incoherence, preprint, arXiv: 1706.04962. Google Scholar

[4]

C. BonattiL. J. Díaz and R. Ures, Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu, 1 (2002), 513-541.  doi: 10.1017/S1474748002000142.  Google Scholar

[5]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, 44 (2005), 475-508.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[6] M. BrinD. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004.   Google Scholar
[7]

M. I. Brin and J. B. Pesin, Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212.   Google Scholar

[8]

M. Brittenham, Essential laminations in Seifert-fibered spaces, Topology, 32 (1993), 61-85.  doi: 10.1016/0040-9383(93)90038-W.  Google Scholar

[9]

M. Brunella, Expansive flows on Seifert manifolds and on torus bundles, Bol. Soc. Brasil Mat., 24 (1993), 89-104.  doi: 10.1007/BF01231697.  Google Scholar

[10]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Ann. of Math., 171 (2010), 451-489.  doi: 10.4007/annals.2010.171.451.  Google Scholar

[11]

P. D. CarrascoF. R. HertzJ. R. Hertz and R. Ures, Partially hyperbolic dynamics in dimension three, Ergodic Theory Dynam. Systems, 38 (2018), 2801-2837.  doi: 10.1017/etds.2016.142.  Google Scholar

[12] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012.   Google Scholar
[13]

S. R. Fenley, Regulating flows, topology of foliations and rigidity, Trans. Amer. Math. Soc., 357 (2005), 4957-5000.  doi: 10.1090/S0002-9947-05-03644-5.  Google Scholar

[14]

S. R. Fenley, Rigidity of pseudo-Anosov flows transverse to $\Bbb{R}$-covered foliations, Comment. Math. Helv., 88 (2013), 643-676.  doi: 10.4171/CMH/299.  Google Scholar

[15]

S. R. Fenley and R. Potrie, Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds, preprint, arXiv: 1809.02284. Google Scholar

[16]

J. Franks, Anosov diffeomorphisms, Amer. Math. Soc., 14 (1970) 61–93.  Google Scholar

[17]

S. Gan and Y. Shi, Rigidity of center Lyapunov exponents and $su$-integrability, Comment. Math. Helv., 95 (2020), 569-592.  doi: 10.4171/CMH/497.  Google Scholar

[18]

É. Ghys, Groups acting on the circle, Enseign. Math., 47 (2001), 329-407.   Google Scholar

[19]

M. GraysonC. Pugh and M. Shub, Stably ergodic diffeomorphisms, Ann. of Math., 140 (1994), 295-329.  doi: 10.2307/2118602.  Google Scholar

[20]

A. Hammerlindl, Ergodic components of partially hyperbolic systems, Comment. Math. Helv., 92 (2017), 131-184.  doi: 10.4171/CMH/409.  Google Scholar

[21]

A. Hammerlindl and R. Potrie, Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group, J. Topol., 8 (2015), 842-870.  doi: 10.1112/jtopol/jtv009.  Google Scholar

[22]

A. HammerlindlR. Potrie and M. Shannon, Seifert manifolds admitting partially hyperbolic diffeomorphisms, J. Mod. Dyn., 12 (2018), 193-222.  doi: 10.3934/jmd.2018008.  Google Scholar

[23]

A. Hammerlindl and R. Ures, Ergodicity and partial hyperbolicity on the 3-torus, Commun. Contemp. Math., 16 (2014), 1350038, 22 pp. doi: 10.1142/S0219199713500387.  Google Scholar

[24]

A. Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16 (1962), 367-397.   Google Scholar

[25]

G. Hector and U. Hirsch, Introduction to the geometry of foliations. Part B. Foliations of codimension one, Aspects of Mathematics, E3, Friedr. Vieweg & Sohn, Braunschweig, 1983. doi: 10.1007/978-3-322-85619-7.  Google Scholar

[26]

M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, (French) Inst. Hautes études Sci. Publ. Math., 49 (1979), 5–233.  Google Scholar

[27]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[28]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes études Sci. Publ. Math., 51 (1980), 137–173.  Google Scholar

[29] K. Mann, Rigidity and flexibility of group actions on the circle. Handbook of group actions. Vol. IV, Adv. Lect. Math. (ALM), 41, Int. Press, omerville, MA, 2018.   Google Scholar
[30]

P. Mendes, On Anosov diffeomorphisms on the plane, Proc. Amer. Math. Soc., 63 (1977), 231-235.  doi: 10.1090/S0002-9939-1977-0461585-X.  Google Scholar

[31]

J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv., 32 (1958), 215-223.  doi: 10.1007/BF02564579.  Google Scholar

[32]

F. R. HertzM. A. R. Hertz and R. Ures, Partial hyperbolicity and ergodicity in dimension three, J. Mod. Dyn., 2 (2008), 187-208.  doi: 10.3934/jmd.2008.2.187.  Google Scholar

[33]

F. R. Hertz, M. A. R. Hertz and R. Ures, Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms, Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007,103–109.  Google Scholar

[34]

F. R. HertzM. A. R. Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381.  doi: 10.1007/s00222-007-0100-z.  Google Scholar

[35]

F. R. HertzM. A. R. Hertz and R. Ures, Tori with hyperbolic dynamics in 3-manifolds, J. Mod. Dyn., 5 (2011), 185-202.  doi: 10.3934/jmd.2011.5.185.  Google Scholar

[36]

F. R. HertzJ. R. Hertz and R. Ures, Center-unstable foliations do not have compact leaves, Math. Res. Lett., 23 (2016), 1819-1832.  doi: 10.4310/MRL.2016.v23.n6.a11.  Google Scholar

[37]

R. Saghin and J. Yang, personal communication., Google Scholar

[38]

P. Scott, The geometries of $3$-manifolds, Bull. London Math. Soc., 15 (1983), 401-487.  doi: 10.1112/blms/15.5.401.  Google Scholar

[39]

J. Zhang, Partially hyperbolic diffeomorphisms with one-dimensional neutral center on 3-manifolds, preprint, arXiv: 1701.06176. Google Scholar

show all references

References:
[1]

A. Avila, S. Crovisier and A. Wilkinson, $C^1$ density of stable ergodicity, arXiv: 1709.04983. Google Scholar

[2]

T. Barthelmé, S. R. Fenley, S. Frankel and R. Potrie, Partially hyperbolic diffeomorphisms homotopic to the identity on 3-manifolds, preprint, arXiv: 1801.00214. Google Scholar

[3]

C. Bonatti, A. Gogolev, A. Hammerlindl and R. Potrie, Anomolous partially hyperbolic diffeomorphisms III: Abundance and incoherence, preprint, arXiv: 1706.04962. Google Scholar

[4]

C. BonattiL. J. Díaz and R. Ures, Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu, 1 (2002), 513-541.  doi: 10.1017/S1474748002000142.  Google Scholar

[5]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, 44 (2005), 475-508.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[6] M. BrinD. Burago and S. Ivanov, On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004.   Google Scholar
[7]

M. I. Brin and J. B. Pesin, Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212.   Google Scholar

[8]

M. Brittenham, Essential laminations in Seifert-fibered spaces, Topology, 32 (1993), 61-85.  doi: 10.1016/0040-9383(93)90038-W.  Google Scholar

[9]

M. Brunella, Expansive flows on Seifert manifolds and on torus bundles, Bol. Soc. Brasil Mat., 24 (1993), 89-104.  doi: 10.1007/BF01231697.  Google Scholar

[10]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Ann. of Math., 171 (2010), 451-489.  doi: 10.4007/annals.2010.171.451.  Google Scholar

[11]

P. D. CarrascoF. R. HertzJ. R. Hertz and R. Ures, Partially hyperbolic dynamics in dimension three, Ergodic Theory Dynam. Systems, 38 (2018), 2801-2837.  doi: 10.1017/etds.2016.142.  Google Scholar

[12] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012.   Google Scholar
[13]

S. R. Fenley, Regulating flows, topology of foliations and rigidity, Trans. Amer. Math. Soc., 357 (2005), 4957-5000.  doi: 10.1090/S0002-9947-05-03644-5.  Google Scholar

[14]

S. R. Fenley, Rigidity of pseudo-Anosov flows transverse to $\Bbb{R}$-covered foliations, Comment. Math. Helv., 88 (2013), 643-676.  doi: 10.4171/CMH/299.  Google Scholar

[15]

S. R. Fenley and R. Potrie, Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds, preprint, arXiv: 1809.02284. Google Scholar

[16]

J. Franks, Anosov diffeomorphisms, Amer. Math. Soc., 14 (1970) 61–93.  Google Scholar

[17]

S. Gan and Y. Shi, Rigidity of center Lyapunov exponents and $su$-integrability, Comment. Math. Helv., 95 (2020), 569-592.  doi: 10.4171/CMH/497.  Google Scholar

[18]

É. Ghys, Groups acting on the circle, Enseign. Math., 47 (2001), 329-407.   Google Scholar

[19]

M. GraysonC. Pugh and M. Shub, Stably ergodic diffeomorphisms, Ann. of Math., 140 (1994), 295-329.  doi: 10.2307/2118602.  Google Scholar

[20]

A. Hammerlindl, Ergodic components of partially hyperbolic systems, Comment. Math. Helv., 92 (2017), 131-184.  doi: 10.4171/CMH/409.  Google Scholar

[21]

A. Hammerlindl and R. Potrie, Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group, J. Topol., 8 (2015), 842-870.  doi: 10.1112/jtopol/jtv009.  Google Scholar

[22]

A. HammerlindlR. Potrie and M. Shannon, Seifert manifolds admitting partially hyperbolic diffeomorphisms, J. Mod. Dyn., 12 (2018), 193-222.  doi: 10.3934/jmd.2018008.  Google Scholar

[23]

A. Hammerlindl and R. Ures, Ergodicity and partial hyperbolicity on the 3-torus, Commun. Contemp. Math., 16 (2014), 1350038, 22 pp. doi: 10.1142/S0219199713500387.  Google Scholar

[24]

A. Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16 (1962), 367-397.   Google Scholar

[25]

G. Hector and U. Hirsch, Introduction to the geometry of foliations. Part B. Foliations of codimension one, Aspects of Mathematics, E3, Friedr. Vieweg & Sohn, Braunschweig, 1983. doi: 10.1007/978-3-322-85619-7.  Google Scholar

[26]

M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, (French) Inst. Hautes études Sci. Publ. Math., 49 (1979), 5–233.  Google Scholar

[27]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[28]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes études Sci. Publ. Math., 51 (1980), 137–173.  Google Scholar

[29] K. Mann, Rigidity and flexibility of group actions on the circle. Handbook of group actions. Vol. IV, Adv. Lect. Math. (ALM), 41, Int. Press, omerville, MA, 2018.   Google Scholar
[30]

P. Mendes, On Anosov diffeomorphisms on the plane, Proc. Amer. Math. Soc., 63 (1977), 231-235.  doi: 10.1090/S0002-9939-1977-0461585-X.  Google Scholar

[31]

J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv., 32 (1958), 215-223.  doi: 10.1007/BF02564579.  Google Scholar

[32]

F. R. HertzM. A. R. Hertz and R. Ures, Partial hyperbolicity and ergodicity in dimension three, J. Mod. Dyn., 2 (2008), 187-208.  doi: 10.3934/jmd.2008.2.187.  Google Scholar

[33]

F. R. Hertz, M. A. R. Hertz and R. Ures, Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms, Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007,103–109.  Google Scholar

[34]

F. R. HertzM. A. R. Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381.  doi: 10.1007/s00222-007-0100-z.  Google Scholar

[35]

F. R. HertzM. A. R. Hertz and R. Ures, Tori with hyperbolic dynamics in 3-manifolds, J. Mod. Dyn., 5 (2011), 185-202.  doi: 10.3934/jmd.2011.5.185.  Google Scholar

[36]

F. R. HertzJ. R. Hertz and R. Ures, Center-unstable foliations do not have compact leaves, Math. Res. Lett., 23 (2016), 1819-1832.  doi: 10.4310/MRL.2016.v23.n6.a11.  Google Scholar

[37]

R. Saghin and J. Yang, personal communication., Google Scholar

[38]

P. Scott, The geometries of $3$-manifolds, Bull. London Math. Soc., 15 (1983), 401-487.  doi: 10.1112/blms/15.5.401.  Google Scholar

[39]

J. Zhang, Partially hyperbolic diffeomorphisms with one-dimensional neutral center on 3-manifolds, preprint, arXiv: 1701.06176. Google Scholar

Figure 1.  Center segments in the proof of Lemma 6.3
[1]

Keith Burns, Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Anna Talitskaya, Raúl Ures. Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 75-88. doi: 10.3934/dcds.2008.22.75

[2]

Keith Burns, Dmitry Dolgopyat, Yakov Pesin, Mark Pollicott. Stable ergodicity for partially hyperbolic attractors with negative central exponents. Journal of Modern Dynamics, 2008, 2 (1) : 63-81. doi: 10.3934/jmd.2008.2.63

[3]

Carlos H. Vásquez. Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. Journal of Modern Dynamics, 2009, 3 (2) : 233-251. doi: 10.3934/jmd.2009.3.233

[4]

Charles Pugh, Michael Shub, Alexander Starkov. Unique ergodicity, stable ergodicity, and the Mautner phenomenon for diffeomorphisms. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 845-855. doi: 10.3934/dcds.2006.14.845

[5]

Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037

[6]

Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419

[7]

F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures. A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms. Electronic Research Announcements, 2007, 14: 74-81. doi: 10.3934/era.2007.14.74

[8]

Andy Hammerlindl, Rafael Potrie, Mario Shannon. Seifert manifolds admitting partially hyperbolic diffeomorphisms. Journal of Modern Dynamics, 2018, 12: 193-222. doi: 10.3934/jmd.2018008

[9]

Lorenzo J. Díaz, Todd Fisher, M. J. Pacifico, José L. Vieitez. Entropy-expansiveness for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4195-4207. doi: 10.3934/dcds.2012.32.4195

[10]

Boris Kalinin, Victoria Sadovskaya. Holonomies and cohomology for cocycles over partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 245-259. doi: 10.3934/dcds.2016.36.245

[11]

Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469

[12]

Andrey Gogolev. Partially hyperbolic diffeomorphisms with compact center foliations. Journal of Modern Dynamics, 2011, 5 (4) : 747-769. doi: 10.3934/jmd.2011.5.747

[13]

Thomas Barthelmé, Andrey Gogolev. Centralizers of partially hyperbolic diffeomorphisms in dimension 3. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4477-4484. doi: 10.3934/dcds.2021044

[14]

C.P. Walkden. Stable ergodicity of skew products of one-dimensional hyperbolic flows. Discrete & Continuous Dynamical Systems, 1999, 5 (4) : 897-904. doi: 10.3934/dcds.1999.5.897

[15]

Dmitri Burago, Sergei Ivanov. Partially hyperbolic diffeomorphisms of 3-manifolds with Abelian fundamental groups. Journal of Modern Dynamics, 2008, 2 (4) : 541-580. doi: 10.3934/jmd.2008.2.541

[16]

Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869

[17]

Michael Brin, Dmitri Burago, Sergey Ivanov. Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus. Journal of Modern Dynamics, 2009, 3 (1) : 1-11. doi: 10.3934/jmd.2009.3.1

[18]

Doris Bohnet. Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation. Journal of Modern Dynamics, 2013, 7 (4) : 565-604. doi: 10.3934/jmd.2013.7.565

[19]

Radu Saghin. Volume growth and entropy for $C^1$ partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3789-3801. doi: 10.3934/dcds.2014.34.3789

[20]

Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (96)
  • HTML views (144)
  • Cited by (0)

[Back to Top]