We review recent advances in the spectral approach to studying statistical properties of dynamical systems highlighting, in particular, the role played by Sébastien Gouëzel.
Citation: |
[1] |
J. Aaronson and D. Terhesiu, Local limit theorems for suspended semiflows, Discrete Contin. Dyn. Syst., 40 (2020), 6575-6609.
doi: 10.3934/dcds.2020294.![]() ![]() ![]() |
[2] |
J. F. Alves, W. Bahsoun and M. Ruziboev, Almost sure rates of mixing for partially hyperbolic attractors, preprint, arXiv: 1904.12844.
![]() |
[3] |
M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I., Ann. of Math. (2), 86 (1967), 374-407.
doi: 10.2307/1970694.![]() ![]() ![]() |
[4] |
A. Avila and S. Gouëzel, Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Ann. of Math. (2), 178 (2013), 385-442.
doi: 10.4007/annals.2013.178.2.1.![]() ![]() ![]() |
[5] |
A. Avila, S. Gouëzel and M. Tsujii, Smoothness of solenoidal attractors, Discrete Contin. Dyn. Syst., 15 (2006), 21-35.
doi: 10.3934/dcds.2006.15.21.![]() ![]() ![]() |
[6] |
A. Avila, S. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math Inst. Hautes Études Sci., 104 (2006), 143-211.
doi: 10.1007/s10240-006-0001-5.![]() ![]() ![]() |
[7] |
V. Baladi, Dynamical zeta functions and dynamical determinants for hyperbolic maps. A functional approach, in Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics, 68, Springer, Cham, 2018.
doi: 10.1007/978-3-319-77661-3.![]() ![]() ![]() |
[8] |
V. Baladi, There are no deviations for the ergodic averages of the Giulietti-Liverani horocycle flows on the two-torus, preprint, to appear in Ergodic Theory Dynam. Systems.
![]() |
[9] |
V. Baladi and M. F. Demers, Thermodynamic formalism for dispersing billiards, preprint, arXiv: 2009.10936.
![]() |
[10] |
V. Baladi, M. F. Demers and C. Liverani, Exponential decay of correlations for finite horizon Sinai billiard flows, Invent. Math., 211 (2018), 39-177.
doi: 10.1007/s00222-017-0745-1.![]() ![]() ![]() |
[11] |
V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1453-1481.
doi: 10.1016/j.anihpc.2009.01.001.![]() ![]() ![]() |
[12] |
V. Baladi and S. Gouëzel, Banach spaces for piecewise cone-hyperbolic maps, J. Mod. Dyn., 4 (2010), 91-137.
doi: 10.3934/jmd.2010.4.91.![]() ![]() ![]() |
[13] |
V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier (Grenoble), 57 (2007), 127-154.
doi: 10.5802/aif.2253.![]() ![]() ![]() |
[14] |
P. Bálint, N. Chernov and D. Dolgopyat, Limit theorems for dispersing billiards with cusps, Comm. Math. Phys., 308 (2011), 479-510.
doi: 10.1007/s00220-011-1342-6.![]() ![]() ![]() |
[15] |
P. Bálint and S. Gouëzel, Limit theorems in the stadium billiard, Comm. Math. Phys., 263 (2006), 461-512.
doi: 10.1007/s00220-005-1511-6.![]() ![]() ![]() |
[16] |
P. M. Bleher, Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon, J. Stat. Phys., 66 (1992), 315-373.
doi: 10.1007/BF01060071.![]() ![]() ![]() |
[17] |
O. Butterley and L. D. Simonelli, Parabolic flows renormalized by partially hyperbolic maps, Boll. Unione Mat. Ital., 13 (2020), 341-360.
doi: 10.1007/s40574-020-00235-8.![]() ![]() ![]() |
[18] |
R. T. Bortolotti, Physical measures for certain partially hyperbolic attractors on 3-manifolds, Ergodic Theory Dynam. Systems, 39 (2019), 74-104.
doi: 10.1017/etds.2017.24.![]() ![]() ![]() |
[19] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, , 2$^nd$ edition, Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin, 2008.
![]() ![]() |
[20] |
M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973.
doi: 10.1088/0951-7715/15/6/309.![]() ![]() ![]() |
[21] |
R. Castorrini and C. Liverani, Quantitative statistical properties of two-dimensional partially hyperbolic systems, preprint, arXiv: 2007.05602.
![]() |
[22] |
M. Cekić, S. Dyatlov, B. Kuster and G. P. Paternain, The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds, preprint, arXiv: 2009.08558.
![]() |
[23] |
J.-R. Chazottes and S. Gouëzel, On almost-sure versions of classical limit theorems for dynamical systems, Probab. Theory Related Fields, 138 (2007), 195-234.
doi: 10.1007/s00440-006-0021-6.![]() ![]() ![]() |
[24] |
P. Collet and S. Isola, On the essential spectrum of the transfer operator for expanding Markov maps, Comm. Math. Phys., 139 (1991), 551-557.
doi: 10.1007/BF02101879.![]() ![]() ![]() |
[25] |
J. Dedecker, S. Gouëzel and F. Merlevède, Large and moderate deviations for bounded functions of slowly mixing Markov chains, Stoch. Dyn., 18 (2018), 1850017, 38 pp.
doi: 10.1142/S021949371850017X.![]() ![]() ![]() |
[26] |
M. F. Demers and C. Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps, Trans. Amer. Math. Soc., 360 (2008), 4777-4814.
doi: 10.1090/S0002-9947-08-04464-4.![]() ![]() ![]() |
[27] |
M. F. Demers and H.-K. Zhang, Spectral analysis of the transfer operator for the Lorentz gas, J. Mod. Dyn., 5 (2011), 665-709.
doi: 10.3934/jmd.2011.5.665.![]() ![]() ![]() |
[28] |
M. F. Demers and H.-K. Zhang, A functional analytic approach to perturbations of the Lorentz gas, Comm. Math. Phys., 324 (2013), 767-830.
doi: 10.1007/s00220-013-1820-0.![]() ![]() ![]() |
[29] |
M. F. Demers and H.-K. Zhang, Spectral analysis of hyperbolic systems with singularities, Nonlinearity, 27 (2014), 379-433.
doi: 10.1088/0951-7715/27/3/379.![]() ![]() ![]() |
[30] |
W. Doeblin and R. Fortet, Sur des chaînes à liaisons complètes, Bull. Soc. Math. France, 65 (1937), 132-148.
![]() ![]() |
[31] |
D. Dolgopyat and P. Nándori, On mixing and the local central limit theorem for hyperbolic flows, Ergodic Theory Dynam. Systems, 40 (2020), 142-174.
doi: 10.1017/etds.2018.29.![]() ![]() ![]() |
[32] |
S. Dyatlov and M. Zworski, Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. Sci. Éc. Norm. Supér (4), 49 (2016), 543–577.
doi: 10.24033/asens.2290.![]() ![]() ![]() |
[33] |
S. Dyatlov and M. Zworski, Ruelle zeta function at zero for surfaces, Invent. Math., 210 (2017), 211-229.
doi: 10.1007/s00222-017-0727-3.![]() ![]() ![]() |
[34] |
F. Faure, S. Gouëzel and E. Lanneau, Ruelle spectrum of linear pseudo-Anosov maps, J. Éc. Polytech. Math., 6 (2019), 811–877.
doi: 10.5802/jep.107.![]() ![]() ![]() |
[35] |
F. Faure and M. Tsujii, Band structure of the Ruelle spectrum of contact Anosov flows, C. R. Math. Acad. Sci. Paris, 351 (2013), 9–10, 385–391.
doi: 10.1016/j.crma.2013.04.022.![]() ![]() ![]() |
[36] |
F. Faure and M. Tsujii, Resonances for geodesic flows on negatively curved manifolds, Proceedings of the International Congress of Mathematicians – Seoul 2014, 3 (2014), 683-697.
![]() ![]() |
[37] |
F. Faure and M. Tsujii, The semiclassical zeta function for geodesic flows on negatively curved manifolds, Invent. Math., 208 (2017), 851-998.
doi: 10.1007/s00222-016-0701-5.![]() ![]() ![]() |
[38] |
F. Faure and M. Tsujii, Fractal Weyl law for the Ruelle spectrum of Anosov flows, preprint, arXiv: 1706.09307.
![]() |
[39] |
D. Fried, Meromorphic zeta functions for analytic flows, Comm. Math. Phys., 174 (1995), 161-190.
doi: 10.1007/BF02099469.![]() ![]() ![]() |
[40] |
G. Forni, Ruelle resonances from cohomological equations, arXiv: 2007.03116.
![]() |
[41] |
G. Forni, On the equidistribution of unstable curves for pseudo-Anosov diffeomorphisms of compact surfaces, arXiv: 2007.03144.
![]() |
[42] |
P. Giulietti and C. Liverani, Parabolic dynamics and anisotropic Banach spaces, J. Eur. Math. Soc. (JEMS), 21 (2019), 2793-2858.
doi: 10.4171/JEMS/892.![]() ![]() ![]() |
[43] |
P. Giulietti, C. Liverani and M. Pollicott, Anosov flows and dynamical zeta functions, Ann. of Math. (2), 178 (2013), 687-773.
doi: 10.4007/annals.2013.178.2.6.![]() ![]() ![]() |
[44] |
S. Gouëzel, Sharp polynomial estimates for the decay of correlations, Israel J. Math., 139 (2004), 29-65.
doi: 10.1007/BF02787541.![]() ![]() ![]() |
[45] |
S. Gouëzel, Central limit theorem and stable laws for intermittent maps, Probab. Theory Related Fields, 128 (2004), 82-122.
doi: 10.1007/s00440-003-0300-4.![]() ![]() ![]() |
[46] |
S. Gouëzel, Berry-Esseen theorem and local limit theorem for non uniformly expanding maps, Ann. Inst. H. Poincaré Probab. Statist., 41 (2005), 997-1024.
doi: 10.1016/j.anihpb.2004.09.002.![]() ![]() ![]() |
[47] |
S. Gouëzel, Almost sure invariance principle for dynamical systems by spectral methods, Ann. Probab., 38 (2010), 1639-1671.
doi: 10.1214/10-AOP525.![]() ![]() ![]() |
[48] |
S. Gouëzel, Limit theorems in dynamical systems using the spectral method, Proc. Sympos. Pure Math., 89 (2015) 161–193.
doi: 10.1090/pspum/089/01487.![]() ![]() ![]() |
[49] |
S. Gouëzel, Spectre du flot géodésique en courbure négative, Séminaire Bourbaki, volume 2014/2015 exposés 1089–1103 (exposé 1098), 380 (2016), 325-353.
![]() |
[50] |
S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems, 26 (2006), 189-217.
doi: 10.1017/S0143385705000374.![]() ![]() ![]() |
[51] |
S. Gouëzel and C. Liverani, Compact locally maximal hyperbolic sets for smooth maps: Fine statistical properties, J. Differential Geom., 79 (2008), 433-477.
doi: 10.4310/jdg/1213798184.![]() ![]() ![]() |
[52] |
Y. Guivarc'h and J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov, Ann. Inst. H. Poincaré Probab. Statist., 24 (1988), 73-98.
![]() ![]() |
[53] |
Y. Guivarc'h and A. Raugi, Products of random matrices: Convergence theorems, Contemp. Math., 50 (1986), 31-54.
doi: 10.1090/conm/050/841080.![]() ![]() ![]() |
[54] |
M. C. Gutzwiller, Chaos in classical and quantum mechanics, Interdisciplinary Applied Mathematics, 1, Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4612-0983-6.![]() ![]() ![]() |
[55] |
Y. Hafouta, Limit theorems for random non-uniformly expanding or hyperbolic maps, preprint, arXiv: 2008.06024.
![]() |
[56] |
H. Hennion and L. Hervé, Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness, Lecture Notes in Mathematics, 1766, Springer-Verlag, Berlin, 2001.
doi: 10.1007/b87874.![]() ![]() ![]() |
[57] |
T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
![]() ![]() |
[58] |
A. Katok, G. Knieper, M. Pollicott and H. Weiss, Differentiability of entropy for Anosov and geodesic flows, Bull. Amer. Math. Soc. (N. S.), 22 (1990), 285-293.
doi: 10.1090/S0273-0979-1990-15889-6.![]() ![]() ![]() |
[59] |
Y. Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc., 321 (1990), 505-524.
doi: 10.1090/S0002-9947-1990-1025756-7.![]() ![]() ![]() |
[60] |
A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488.
doi: 10.1090/S0002-9947-1973-0335758-1.![]() ![]() ![]() |
[61] |
F. Ledrappier, Three problems solved by Sébastien Gouëzel, J. Mod. Dyn., 16 (2020), 373-387.
doi: 10.3934/jmd.2020015.![]() ![]() |
[62] |
C. Liverani, Fredholm determinants, Anosov maps and Ruelle resonances, Discrete Contin. Dyn. Syst., 13 (2005), 1203-1215.
doi: 10.3934/dcds.2005.13.1203.![]() ![]() ![]() |
[63] |
C. Liverani and M. Tsujii, Zeta functions and dynamical systems, Nonlinearity, 19 (2006), 2467-2473.
doi: 10.1088/0951-7715/19/10/011.![]() ![]() ![]() |
[64] |
C. Liverani and D. Terhesiu, Mixing for some non-uniformly hyperbolic systems, Ann. Henri Poincaré, 17 (2016), 179-226.
doi: 10.1007/s00023-015-0399-8.![]() ![]() ![]() |
[65] |
J. Machta, Power law decay of correlations in a billiard problem, J. Stat. Phys., 32 (1983), 555-564.
doi: 10.1007/BF01008956.![]() ![]() ![]() |
[66] |
G. A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-662-09070-1.![]() ![]() ![]() |
[67] |
I. Melbourne and D. Terhesiu, Operator renewal theory and mixing rates for dynamical systems with infinite measure, Invent. Math., 189 (2012), 61-110.
doi: 10.1007/s00222-011-0361-4.![]() ![]() ![]() |
[68] |
I. Melbourne and D. Terhesiu, Renewal theorems and mixing for non Markov flows with infinite measure, Ann. Inst. Henri. Poincaré Probab. Stat., 56 (2020), 449-476.
doi: 10.1214/19-AIHP968.![]() ![]() ![]() |
[69] |
W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187–188 (1990), 268 pp.
![]() ![]() |
[70] |
M. Pollicott, On the rate of mixing of Axiom A flows, Invent. Math., 81 (1985), 413-426.
doi: 10.1007/BF01388579.![]() ![]() ![]() |
[71] |
D. Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys., 125 (1989), 239-262.
doi: 10.1007/BF01217908.![]() ![]() ![]() |
[72] |
O. Sarig, Subexponential decay of correlations, Invent. Math., 150 (2002), 629-653.
doi: 10.1007/s00222-002-0248-5.![]() ![]() ![]() |
[73] |
A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N. S.), 20 (1956), 47-87.
![]() ![]() |
[74] |
J. G. Sinai, Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64.
![]() ![]() |
[75] |
J. Slipantschuk, O. F. Bandtlow and W. Just, Spectral structure of transfer operators for expanding circle maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 31-43.
doi: 10.1016/j.anihpc.2015.08.004.![]() ![]() ![]() |
[76] |
J. Slipantschuk, O. F. Bandtlow and W. Just, Complete spectral data for analytic Anosov maps of the torus, Nonlinearity, 30 (2017), 2667-2686.
doi: 10.1088/1361-6544/aa700f.![]() ![]() ![]() |
[77] |
D. Szasz and T. Varju, Limit laws and recurrence for the planar Lorentz process with infinite horizon, J. Stat. Phys., 129 (2007), 59-80.
doi: 10.1007/s10955-007-9367-0.![]() ![]() ![]() |
[78] |
M. Tsujii, Quasi-compactness of transfer operators for contact Anosov flows, Nonlinearity, 23 (2010), 1495-1545.
doi: 10.1088/0951-7715/23/7/001.![]() ![]() ![]() |
[79] |
M. Tsujii, Exponential mixing for generic volume-preserving Anosov flows in dimension three, J. Math. Soc. Japan, 70 (2018), 757-821.
doi: 10.2969/jmsj/07027595.![]() ![]() ![]() |
[80] |
M. Tsujii and Z. Zhang, Smooth mixing Anosov flows in dimension three are exponential mixing, arXiv: 2006.04293.
![]() |
[81] |
L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2), 147 (1998), 585-650.
doi: 10.2307/120960.![]() ![]() ![]() |
[82] |
L.-S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999), 153-188.
doi: 10.1007/BF02808180.![]() ![]() ![]() |
Semidispersing billiards