2020, 16: 351-371. doi: 10.3934/jmd.2020014

The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces (Brin Prize article)

Department of Mathematics, University of Maryland, College Park, MD 20742-4015, USA

Published  December 2020

We review recent advances in the spectral approach to studying statistical properties of dynamical systems highlighting, in particular, the role played by Sébastien Gouëzel.

Citation: Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014
References:
[1]

J. Aaronson and D. Terhesiu, Local limit theorems for suspended semiflows, Discrete Contin. Dyn. Syst., 40 (2020), 6575-6609.  doi: 10.3934/dcds.2020294.  Google Scholar

[2]

J. F. Alves, W. Bahsoun and M. Ruziboev, Almost sure rates of mixing for partially hyperbolic attractors, preprint, arXiv: 1904.12844. Google Scholar

[3]

M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I., Ann. of Math. (2), 86 (1967), 374-407.  doi: 10.2307/1970694.  Google Scholar

[4]

A. Avila and S. Gouëzel, Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Ann. of Math. (2), 178 (2013), 385-442.  doi: 10.4007/annals.2013.178.2.1.  Google Scholar

[5]

A. AvilaS. Gouëzel and M. Tsujii, Smoothness of solenoidal attractors, Discrete Contin. Dyn. Syst., 15 (2006), 21-35.  doi: 10.3934/dcds.2006.15.21.  Google Scholar

[6]

A. AvilaS. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math Inst. Hautes Études Sci., 104 (2006), 143-211.  doi: 10.1007/s10240-006-0001-5.  Google Scholar

[7]

V. Baladi, Dynamical zeta functions and dynamical determinants for hyperbolic maps. A functional approach, in Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics, 68, Springer, Cham, 2018. doi: 10.1007/978-3-319-77661-3.  Google Scholar

[8]

V. Baladi, There are no deviations for the ergodic averages of the Giulietti-Liverani horocycle flows on the two-torus, preprint, to appear in Ergodic Theory Dynam. Systems. Google Scholar

[9]

V. Baladi and M. F. Demers, Thermodynamic formalism for dispersing billiards, preprint, arXiv: 2009.10936. Google Scholar

[10]

V. BaladiM. F. Demers and C. Liverani, Exponential decay of correlations for finite horizon Sinai billiard flows, Invent. Math., 211 (2018), 39-177.  doi: 10.1007/s00222-017-0745-1.  Google Scholar

[11]

V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1453-1481.  doi: 10.1016/j.anihpc.2009.01.001.  Google Scholar

[12]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone-hyperbolic maps, J. Mod. Dyn., 4 (2010), 91-137.  doi: 10.3934/jmd.2010.4.91.  Google Scholar

[13]

V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier (Grenoble), 57 (2007), 127-154.  doi: 10.5802/aif.2253.  Google Scholar

[14]

P. BálintN. Chernov and D. Dolgopyat, Limit theorems for dispersing billiards with cusps, Comm. Math. Phys., 308 (2011), 479-510.  doi: 10.1007/s00220-011-1342-6.  Google Scholar

[15]

P. Bálint and S. Gouëzel, Limit theorems in the stadium billiard, Comm. Math. Phys., 263 (2006), 461-512.  doi: 10.1007/s00220-005-1511-6.  Google Scholar

[16]

P. M. Bleher, Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon, J. Stat. Phys., 66 (1992), 315-373.  doi: 10.1007/BF01060071.  Google Scholar

[17]

O. Butterley and L. D. Simonelli, Parabolic flows renormalized by partially hyperbolic maps, Boll. Unione Mat. Ital., 13 (2020), 341-360.  doi: 10.1007/s40574-020-00235-8.  Google Scholar

[18]

R. T. Bortolotti, Physical measures for certain partially hyperbolic attractors on 3-manifolds, Ergodic Theory Dynam. Systems, 39 (2019), 74-104.  doi: 10.1017/etds.2017.24.  Google Scholar

[19]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, , 2$^nd$ edition, Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin, 2008.  Google Scholar

[20]

M. BlankG. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973.  doi: 10.1088/0951-7715/15/6/309.  Google Scholar

[21]

R. Castorrini and C. Liverani, Quantitative statistical properties of two-dimensional partially hyperbolic systems, preprint, arXiv: 2007.05602. Google Scholar

[22]

M. Cekić, S. Dyatlov, B. Kuster and G. P. Paternain, The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds, preprint, arXiv: 2009.08558. Google Scholar

[23]

J.-R. Chazottes and S. Gouëzel, On almost-sure versions of classical limit theorems for dynamical systems, Probab. Theory Related Fields, 138 (2007), 195-234.  doi: 10.1007/s00440-006-0021-6.  Google Scholar

[24]

P. Collet and S. Isola, On the essential spectrum of the transfer operator for expanding Markov maps, Comm. Math. Phys., 139 (1991), 551-557.  doi: 10.1007/BF02101879.  Google Scholar

[25]

J. Dedecker, S. Gouëzel and F. Merlevède, Large and moderate deviations for bounded functions of slowly mixing Markov chains, Stoch. Dyn., 18 (2018), 1850017, 38 pp. doi: 10.1142/S021949371850017X.  Google Scholar

[26]

M. F. Demers and C. Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps, Trans. Amer. Math. Soc., 360 (2008), 4777-4814.  doi: 10.1090/S0002-9947-08-04464-4.  Google Scholar

[27]

M. F. Demers and H.-K. Zhang, Spectral analysis of the transfer operator for the Lorentz gas, J. Mod. Dyn., 5 (2011), 665-709.  doi: 10.3934/jmd.2011.5.665.  Google Scholar

[28]

M. F. Demers and H.-K. Zhang, A functional analytic approach to perturbations of the Lorentz gas, Comm. Math. Phys., 324 (2013), 767-830.  doi: 10.1007/s00220-013-1820-0.  Google Scholar

[29]

M. F. Demers and H.-K. Zhang, Spectral analysis of hyperbolic systems with singularities, Nonlinearity, 27 (2014), 379-433.  doi: 10.1088/0951-7715/27/3/379.  Google Scholar

[30]

W. Doeblin and R. Fortet, Sur des chaînes à liaisons complètes, Bull. Soc. Math. France, 65 (1937), 132-148.   Google Scholar

[31]

D. Dolgopyat and P. Nándori, On mixing and the local central limit theorem for hyperbolic flows, Ergodic Theory Dynam. Systems, 40 (2020), 142-174.  doi: 10.1017/etds.2018.29.  Google Scholar

[32]

S. Dyatlov and M. Zworski, Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. Sci. Éc. Norm. Supér (4), 49 (2016), 543–577. doi: 10.24033/asens.2290.  Google Scholar

[33]

S. Dyatlov and M. Zworski, Ruelle zeta function at zero for surfaces, Invent. Math., 210 (2017), 211-229.  doi: 10.1007/s00222-017-0727-3.  Google Scholar

[34]

F. Faure, S. Gouëzel and E. Lanneau, Ruelle spectrum of linear pseudo-Anosov maps, J. Éc. Polytech. Math., 6 (2019), 811–877. doi: 10.5802/jep.107.  Google Scholar

[35]

F. Faure and M. Tsujii, Band structure of the Ruelle spectrum of contact Anosov flows, C. R. Math. Acad. Sci. Paris, 351 (2013), 9–10, 385–391. doi: 10.1016/j.crma.2013.04.022.  Google Scholar

[36]

F. Faure and M. Tsujii, Resonances for geodesic flows on negatively curved manifolds, Proceedings of the International Congress of Mathematicians – Seoul 2014, 3 (2014), 683-697.   Google Scholar

[37]

F. Faure and M. Tsujii, The semiclassical zeta function for geodesic flows on negatively curved manifolds, Invent. Math., 208 (2017), 851-998.  doi: 10.1007/s00222-016-0701-5.  Google Scholar

[38]

F. Faure and M. Tsujii, Fractal Weyl law for the Ruelle spectrum of Anosov flows, preprint, arXiv: 1706.09307. Google Scholar

[39]

D. Fried, Meromorphic zeta functions for analytic flows, Comm. Math. Phys., 174 (1995), 161-190.  doi: 10.1007/BF02099469.  Google Scholar

[40]

G. Forni, Ruelle resonances from cohomological equations, arXiv: 2007.03116. Google Scholar

[41]

G. Forni, On the equidistribution of unstable curves for pseudo-Anosov diffeomorphisms of compact surfaces, arXiv: 2007.03144. Google Scholar

[42]

P. Giulietti and C. Liverani, Parabolic dynamics and anisotropic Banach spaces, J. Eur. Math. Soc. (JEMS), 21 (2019), 2793-2858.  doi: 10.4171/JEMS/892.  Google Scholar

[43]

P. GiuliettiC. Liverani and M. Pollicott, Anosov flows and dynamical zeta functions, Ann. of Math. (2), 178 (2013), 687-773.  doi: 10.4007/annals.2013.178.2.6.  Google Scholar

[44]

S. Gouëzel, Sharp polynomial estimates for the decay of correlations, Israel J. Math., 139 (2004), 29-65.  doi: 10.1007/BF02787541.  Google Scholar

[45]

S. Gouëzel, Central limit theorem and stable laws for intermittent maps, Probab. Theory Related Fields, 128 (2004), 82-122.  doi: 10.1007/s00440-003-0300-4.  Google Scholar

[46]

S. Gouëzel, Berry-Esseen theorem and local limit theorem for non uniformly expanding maps, Ann. Inst. H. Poincaré Probab. Statist., 41 (2005), 997-1024.  doi: 10.1016/j.anihpb.2004.09.002.  Google Scholar

[47]

S. Gouëzel, Almost sure invariance principle for dynamical systems by spectral methods, Ann. Probab., 38 (2010), 1639-1671.  doi: 10.1214/10-AOP525.  Google Scholar

[48]

S. Gouëzel, Limit theorems in dynamical systems using the spectral method, Proc. Sympos. Pure Math., 89 (2015) 161–193. doi: 10.1090/pspum/089/01487.  Google Scholar

[49]

S. Gouëzel, Spectre du flot géodésique en courbure négative, Séminaire Bourbaki, volume 2014/2015 exposés 1089–1103 (exposé 1098), 380 (2016), 325-353.   Google Scholar

[50]

S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems, 26 (2006), 189-217.  doi: 10.1017/S0143385705000374.  Google Scholar

[51]

S. Gouëzel and C. Liverani, Compact locally maximal hyperbolic sets for smooth maps: Fine statistical properties, J. Differential Geom., 79 (2008), 433-477.  doi: 10.4310/jdg/1213798184.  Google Scholar

[52]

Y. Guivarc'h and J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov, Ann. Inst. H. Poincaré Probab. Statist., 24 (1988), 73-98.   Google Scholar

[53]

Y. Guivarc'h and A. Raugi, Products of random matrices: Convergence theorems, Contemp. Math., 50 (1986), 31-54.  doi: 10.1090/conm/050/841080.  Google Scholar

[54]

M. C. Gutzwiller, Chaos in classical and quantum mechanics, Interdisciplinary Applied Mathematics, 1, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0983-6.  Google Scholar

[55]

Y. Hafouta, Limit theorems for random non-uniformly expanding or hyperbolic maps, preprint, arXiv: 2008.06024. Google Scholar

[56]

H. Hennion and L. Hervé, Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness, Lecture Notes in Mathematics, 1766, Springer-Verlag, Berlin, 2001. doi: 10.1007/b87874.  Google Scholar

[57]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[58]

A. KatokG. KnieperM. Pollicott and H. Weiss, Differentiability of entropy for Anosov and geodesic flows, Bull. Amer. Math. Soc. (N. S.), 22 (1990), 285-293.  doi: 10.1090/S0273-0979-1990-15889-6.  Google Scholar

[59]

Y. Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc., 321 (1990), 505-524.  doi: 10.1090/S0002-9947-1990-1025756-7.  Google Scholar

[60]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488.  doi: 10.1090/S0002-9947-1973-0335758-1.  Google Scholar

[61]

F. Ledrappier, Three problems solved by Sébastien Gouëzel, J. Mod. Dyn., 16 (2020), 373-387.  doi: 10.3934/jmd.2020015.  Google Scholar

[62]

C. Liverani, Fredholm determinants, Anosov maps and Ruelle resonances, Discrete Contin. Dyn. Syst., 13 (2005), 1203-1215.  doi: 10.3934/dcds.2005.13.1203.  Google Scholar

[63]

C. Liverani and M. Tsujii, Zeta functions and dynamical systems, Nonlinearity, 19 (2006), 2467-2473.  doi: 10.1088/0951-7715/19/10/011.  Google Scholar

[64]

C. Liverani and D. Terhesiu, Mixing for some non-uniformly hyperbolic systems, Ann. Henri Poincaré, 17 (2016), 179-226.  doi: 10.1007/s00023-015-0399-8.  Google Scholar

[65]

J. Machta, Power law decay of correlations in a billiard problem, J. Stat. Phys., 32 (1983), 555-564.  doi: 10.1007/BF01008956.  Google Scholar

[66]

G. A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-09070-1.  Google Scholar

[67]

I. Melbourne and D. Terhesiu, Operator renewal theory and mixing rates for dynamical systems with infinite measure, Invent. Math., 189 (2012), 61-110.  doi: 10.1007/s00222-011-0361-4.  Google Scholar

[68]

I. Melbourne and D. Terhesiu, Renewal theorems and mixing for non Markov flows with infinite measure, Ann. Inst. Henri. Poincaré Probab. Stat., 56 (2020), 449-476.  doi: 10.1214/19-AIHP968.  Google Scholar

[69]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187–188 (1990), 268 pp.  Google Scholar

[70]

M. Pollicott, On the rate of mixing of Axiom A flows, Invent. Math., 81 (1985), 413-426.  doi: 10.1007/BF01388579.  Google Scholar

[71]

D. Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys., 125 (1989), 239-262.  doi: 10.1007/BF01217908.  Google Scholar

[72]

O. Sarig, Subexponential decay of correlations, Invent. Math., 150 (2002), 629-653.  doi: 10.1007/s00222-002-0248-5.  Google Scholar

[73]

A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N. S.), 20 (1956), 47-87.   Google Scholar

[74]

J. G. Sinai, Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64.   Google Scholar

[75]

J. SlipantschukO. F. Bandtlow and W. Just, Spectral structure of transfer operators for expanding circle maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 31-43.  doi: 10.1016/j.anihpc.2015.08.004.  Google Scholar

[76]

J. SlipantschukO. F. Bandtlow and W. Just, Complete spectral data for analytic Anosov maps of the torus, Nonlinearity, 30 (2017), 2667-2686.  doi: 10.1088/1361-6544/aa700f.  Google Scholar

[77]

D. Szasz and T. Varju, Limit laws and recurrence for the planar Lorentz process with infinite horizon, J. Stat. Phys., 129 (2007), 59-80.  doi: 10.1007/s10955-007-9367-0.  Google Scholar

[78]

M. Tsujii, Quasi-compactness of transfer operators for contact Anosov flows, Nonlinearity, 23 (2010), 1495-1545.  doi: 10.1088/0951-7715/23/7/001.  Google Scholar

[79]

M. Tsujii, Exponential mixing for generic volume-preserving Anosov flows in dimension three, J. Math. Soc. Japan, 70 (2018), 757-821.  doi: 10.2969/jmsj/07027595.  Google Scholar

[80]

M. Tsujii and Z. Zhang, Smooth mixing Anosov flows in dimension three are exponential mixing, arXiv: 2006.04293. Google Scholar

[81]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2), 147 (1998), 585-650.  doi: 10.2307/120960.  Google Scholar

[82]

L.-S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999), 153-188.  doi: 10.1007/BF02808180.  Google Scholar

show all references

References:
[1]

J. Aaronson and D. Terhesiu, Local limit theorems for suspended semiflows, Discrete Contin. Dyn. Syst., 40 (2020), 6575-6609.  doi: 10.3934/dcds.2020294.  Google Scholar

[2]

J. F. Alves, W. Bahsoun and M. Ruziboev, Almost sure rates of mixing for partially hyperbolic attractors, preprint, arXiv: 1904.12844. Google Scholar

[3]

M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I., Ann. of Math. (2), 86 (1967), 374-407.  doi: 10.2307/1970694.  Google Scholar

[4]

A. Avila and S. Gouëzel, Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Ann. of Math. (2), 178 (2013), 385-442.  doi: 10.4007/annals.2013.178.2.1.  Google Scholar

[5]

A. AvilaS. Gouëzel and M. Tsujii, Smoothness of solenoidal attractors, Discrete Contin. Dyn. Syst., 15 (2006), 21-35.  doi: 10.3934/dcds.2006.15.21.  Google Scholar

[6]

A. AvilaS. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math Inst. Hautes Études Sci., 104 (2006), 143-211.  doi: 10.1007/s10240-006-0001-5.  Google Scholar

[7]

V. Baladi, Dynamical zeta functions and dynamical determinants for hyperbolic maps. A functional approach, in Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics, 68, Springer, Cham, 2018. doi: 10.1007/978-3-319-77661-3.  Google Scholar

[8]

V. Baladi, There are no deviations for the ergodic averages of the Giulietti-Liverani horocycle flows on the two-torus, preprint, to appear in Ergodic Theory Dynam. Systems. Google Scholar

[9]

V. Baladi and M. F. Demers, Thermodynamic formalism for dispersing billiards, preprint, arXiv: 2009.10936. Google Scholar

[10]

V. BaladiM. F. Demers and C. Liverani, Exponential decay of correlations for finite horizon Sinai billiard flows, Invent. Math., 211 (2018), 39-177.  doi: 10.1007/s00222-017-0745-1.  Google Scholar

[11]

V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1453-1481.  doi: 10.1016/j.anihpc.2009.01.001.  Google Scholar

[12]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone-hyperbolic maps, J. Mod. Dyn., 4 (2010), 91-137.  doi: 10.3934/jmd.2010.4.91.  Google Scholar

[13]

V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier (Grenoble), 57 (2007), 127-154.  doi: 10.5802/aif.2253.  Google Scholar

[14]

P. BálintN. Chernov and D. Dolgopyat, Limit theorems for dispersing billiards with cusps, Comm. Math. Phys., 308 (2011), 479-510.  doi: 10.1007/s00220-011-1342-6.  Google Scholar

[15]

P. Bálint and S. Gouëzel, Limit theorems in the stadium billiard, Comm. Math. Phys., 263 (2006), 461-512.  doi: 10.1007/s00220-005-1511-6.  Google Scholar

[16]

P. M. Bleher, Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon, J. Stat. Phys., 66 (1992), 315-373.  doi: 10.1007/BF01060071.  Google Scholar

[17]

O. Butterley and L. D. Simonelli, Parabolic flows renormalized by partially hyperbolic maps, Boll. Unione Mat. Ital., 13 (2020), 341-360.  doi: 10.1007/s40574-020-00235-8.  Google Scholar

[18]

R. T. Bortolotti, Physical measures for certain partially hyperbolic attractors on 3-manifolds, Ergodic Theory Dynam. Systems, 39 (2019), 74-104.  doi: 10.1017/etds.2017.24.  Google Scholar

[19]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, , 2$^nd$ edition, Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin, 2008.  Google Scholar

[20]

M. BlankG. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973.  doi: 10.1088/0951-7715/15/6/309.  Google Scholar

[21]

R. Castorrini and C. Liverani, Quantitative statistical properties of two-dimensional partially hyperbolic systems, preprint, arXiv: 2007.05602. Google Scholar

[22]

M. Cekić, S. Dyatlov, B. Kuster and G. P. Paternain, The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds, preprint, arXiv: 2009.08558. Google Scholar

[23]

J.-R. Chazottes and S. Gouëzel, On almost-sure versions of classical limit theorems for dynamical systems, Probab. Theory Related Fields, 138 (2007), 195-234.  doi: 10.1007/s00440-006-0021-6.  Google Scholar

[24]

P. Collet and S. Isola, On the essential spectrum of the transfer operator for expanding Markov maps, Comm. Math. Phys., 139 (1991), 551-557.  doi: 10.1007/BF02101879.  Google Scholar

[25]

J. Dedecker, S. Gouëzel and F. Merlevède, Large and moderate deviations for bounded functions of slowly mixing Markov chains, Stoch. Dyn., 18 (2018), 1850017, 38 pp. doi: 10.1142/S021949371850017X.  Google Scholar

[26]

M. F. Demers and C. Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps, Trans. Amer. Math. Soc., 360 (2008), 4777-4814.  doi: 10.1090/S0002-9947-08-04464-4.  Google Scholar

[27]

M. F. Demers and H.-K. Zhang, Spectral analysis of the transfer operator for the Lorentz gas, J. Mod. Dyn., 5 (2011), 665-709.  doi: 10.3934/jmd.2011.5.665.  Google Scholar

[28]

M. F. Demers and H.-K. Zhang, A functional analytic approach to perturbations of the Lorentz gas, Comm. Math. Phys., 324 (2013), 767-830.  doi: 10.1007/s00220-013-1820-0.  Google Scholar

[29]

M. F. Demers and H.-K. Zhang, Spectral analysis of hyperbolic systems with singularities, Nonlinearity, 27 (2014), 379-433.  doi: 10.1088/0951-7715/27/3/379.  Google Scholar

[30]

W. Doeblin and R. Fortet, Sur des chaînes à liaisons complètes, Bull. Soc. Math. France, 65 (1937), 132-148.   Google Scholar

[31]

D. Dolgopyat and P. Nándori, On mixing and the local central limit theorem for hyperbolic flows, Ergodic Theory Dynam. Systems, 40 (2020), 142-174.  doi: 10.1017/etds.2018.29.  Google Scholar

[32]

S. Dyatlov and M. Zworski, Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. Sci. Éc. Norm. Supér (4), 49 (2016), 543–577. doi: 10.24033/asens.2290.  Google Scholar

[33]

S. Dyatlov and M. Zworski, Ruelle zeta function at zero for surfaces, Invent. Math., 210 (2017), 211-229.  doi: 10.1007/s00222-017-0727-3.  Google Scholar

[34]

F. Faure, S. Gouëzel and E. Lanneau, Ruelle spectrum of linear pseudo-Anosov maps, J. Éc. Polytech. Math., 6 (2019), 811–877. doi: 10.5802/jep.107.  Google Scholar

[35]

F. Faure and M. Tsujii, Band structure of the Ruelle spectrum of contact Anosov flows, C. R. Math. Acad. Sci. Paris, 351 (2013), 9–10, 385–391. doi: 10.1016/j.crma.2013.04.022.  Google Scholar

[36]

F. Faure and M. Tsujii, Resonances for geodesic flows on negatively curved manifolds, Proceedings of the International Congress of Mathematicians – Seoul 2014, 3 (2014), 683-697.   Google Scholar

[37]

F. Faure and M. Tsujii, The semiclassical zeta function for geodesic flows on negatively curved manifolds, Invent. Math., 208 (2017), 851-998.  doi: 10.1007/s00222-016-0701-5.  Google Scholar

[38]

F. Faure and M. Tsujii, Fractal Weyl law for the Ruelle spectrum of Anosov flows, preprint, arXiv: 1706.09307. Google Scholar

[39]

D. Fried, Meromorphic zeta functions for analytic flows, Comm. Math. Phys., 174 (1995), 161-190.  doi: 10.1007/BF02099469.  Google Scholar

[40]

G. Forni, Ruelle resonances from cohomological equations, arXiv: 2007.03116. Google Scholar

[41]

G. Forni, On the equidistribution of unstable curves for pseudo-Anosov diffeomorphisms of compact surfaces, arXiv: 2007.03144. Google Scholar

[42]

P. Giulietti and C. Liverani, Parabolic dynamics and anisotropic Banach spaces, J. Eur. Math. Soc. (JEMS), 21 (2019), 2793-2858.  doi: 10.4171/JEMS/892.  Google Scholar

[43]

P. GiuliettiC. Liverani and M. Pollicott, Anosov flows and dynamical zeta functions, Ann. of Math. (2), 178 (2013), 687-773.  doi: 10.4007/annals.2013.178.2.6.  Google Scholar

[44]

S. Gouëzel, Sharp polynomial estimates for the decay of correlations, Israel J. Math., 139 (2004), 29-65.  doi: 10.1007/BF02787541.  Google Scholar

[45]

S. Gouëzel, Central limit theorem and stable laws for intermittent maps, Probab. Theory Related Fields, 128 (2004), 82-122.  doi: 10.1007/s00440-003-0300-4.  Google Scholar

[46]

S. Gouëzel, Berry-Esseen theorem and local limit theorem for non uniformly expanding maps, Ann. Inst. H. Poincaré Probab. Statist., 41 (2005), 997-1024.  doi: 10.1016/j.anihpb.2004.09.002.  Google Scholar

[47]

S. Gouëzel, Almost sure invariance principle for dynamical systems by spectral methods, Ann. Probab., 38 (2010), 1639-1671.  doi: 10.1214/10-AOP525.  Google Scholar

[48]

S. Gouëzel, Limit theorems in dynamical systems using the spectral method, Proc. Sympos. Pure Math., 89 (2015) 161–193. doi: 10.1090/pspum/089/01487.  Google Scholar

[49]

S. Gouëzel, Spectre du flot géodésique en courbure négative, Séminaire Bourbaki, volume 2014/2015 exposés 1089–1103 (exposé 1098), 380 (2016), 325-353.   Google Scholar

[50]

S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems, 26 (2006), 189-217.  doi: 10.1017/S0143385705000374.  Google Scholar

[51]

S. Gouëzel and C. Liverani, Compact locally maximal hyperbolic sets for smooth maps: Fine statistical properties, J. Differential Geom., 79 (2008), 433-477.  doi: 10.4310/jdg/1213798184.  Google Scholar

[52]

Y. Guivarc'h and J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov, Ann. Inst. H. Poincaré Probab. Statist., 24 (1988), 73-98.   Google Scholar

[53]

Y. Guivarc'h and A. Raugi, Products of random matrices: Convergence theorems, Contemp. Math., 50 (1986), 31-54.  doi: 10.1090/conm/050/841080.  Google Scholar

[54]

M. C. Gutzwiller, Chaos in classical and quantum mechanics, Interdisciplinary Applied Mathematics, 1, Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-0983-6.  Google Scholar

[55]

Y. Hafouta, Limit theorems for random non-uniformly expanding or hyperbolic maps, preprint, arXiv: 2008.06024. Google Scholar

[56]

H. Hennion and L. Hervé, Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness, Lecture Notes in Mathematics, 1766, Springer-Verlag, Berlin, 2001. doi: 10.1007/b87874.  Google Scholar

[57]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[58]

A. KatokG. KnieperM. Pollicott and H. Weiss, Differentiability of entropy for Anosov and geodesic flows, Bull. Amer. Math. Soc. (N. S.), 22 (1990), 285-293.  doi: 10.1090/S0273-0979-1990-15889-6.  Google Scholar

[59]

Y. Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc., 321 (1990), 505-524.  doi: 10.1090/S0002-9947-1990-1025756-7.  Google Scholar

[60]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488.  doi: 10.1090/S0002-9947-1973-0335758-1.  Google Scholar

[61]

F. Ledrappier, Three problems solved by Sébastien Gouëzel, J. Mod. Dyn., 16 (2020), 373-387.  doi: 10.3934/jmd.2020015.  Google Scholar

[62]

C. Liverani, Fredholm determinants, Anosov maps and Ruelle resonances, Discrete Contin. Dyn. Syst., 13 (2005), 1203-1215.  doi: 10.3934/dcds.2005.13.1203.  Google Scholar

[63]

C. Liverani and M. Tsujii, Zeta functions and dynamical systems, Nonlinearity, 19 (2006), 2467-2473.  doi: 10.1088/0951-7715/19/10/011.  Google Scholar

[64]

C. Liverani and D. Terhesiu, Mixing for some non-uniformly hyperbolic systems, Ann. Henri Poincaré, 17 (2016), 179-226.  doi: 10.1007/s00023-015-0399-8.  Google Scholar

[65]

J. Machta, Power law decay of correlations in a billiard problem, J. Stat. Phys., 32 (1983), 555-564.  doi: 10.1007/BF01008956.  Google Scholar

[66]

G. A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-09070-1.  Google Scholar

[67]

I. Melbourne and D. Terhesiu, Operator renewal theory and mixing rates for dynamical systems with infinite measure, Invent. Math., 189 (2012), 61-110.  doi: 10.1007/s00222-011-0361-4.  Google Scholar

[68]

I. Melbourne and D. Terhesiu, Renewal theorems and mixing for non Markov flows with infinite measure, Ann. Inst. Henri. Poincaré Probab. Stat., 56 (2020), 449-476.  doi: 10.1214/19-AIHP968.  Google Scholar

[69]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187–188 (1990), 268 pp.  Google Scholar

[70]

M. Pollicott, On the rate of mixing of Axiom A flows, Invent. Math., 81 (1985), 413-426.  doi: 10.1007/BF01388579.  Google Scholar

[71]

D. Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys., 125 (1989), 239-262.  doi: 10.1007/BF01217908.  Google Scholar

[72]

O. Sarig, Subexponential decay of correlations, Invent. Math., 150 (2002), 629-653.  doi: 10.1007/s00222-002-0248-5.  Google Scholar

[73]

A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N. S.), 20 (1956), 47-87.   Google Scholar

[74]

J. G. Sinai, Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64.   Google Scholar

[75]

J. SlipantschukO. F. Bandtlow and W. Just, Spectral structure of transfer operators for expanding circle maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 31-43.  doi: 10.1016/j.anihpc.2015.08.004.  Google Scholar

[76]

J. SlipantschukO. F. Bandtlow and W. Just, Complete spectral data for analytic Anosov maps of the torus, Nonlinearity, 30 (2017), 2667-2686.  doi: 10.1088/1361-6544/aa700f.  Google Scholar

[77]

D. Szasz and T. Varju, Limit laws and recurrence for the planar Lorentz process with infinite horizon, J. Stat. Phys., 129 (2007), 59-80.  doi: 10.1007/s10955-007-9367-0.  Google Scholar

[78]

M. Tsujii, Quasi-compactness of transfer operators for contact Anosov flows, Nonlinearity, 23 (2010), 1495-1545.  doi: 10.1088/0951-7715/23/7/001.  Google Scholar

[79]

M. Tsujii, Exponential mixing for generic volume-preserving Anosov flows in dimension three, J. Math. Soc. Japan, 70 (2018), 757-821.  doi: 10.2969/jmsj/07027595.  Google Scholar

[80]

M. Tsujii and Z. Zhang, Smooth mixing Anosov flows in dimension three are exponential mixing, arXiv: 2006.04293. Google Scholar

[81]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2), 147 (1998), 585-650.  doi: 10.2307/120960.  Google Scholar

[82]

L.-S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999), 153-188.  doi: 10.1007/BF02808180.  Google Scholar

Figure 1.  Semidispersing billiards
[1]

Carlangelo Liverani. Fredholm determinants, Anosov maps and Ruelle resonances. Discrete & Continuous Dynamical Systems, 2005, 13 (5) : 1203-1215. doi: 10.3934/dcds.2005.13.1203

[2]

Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119

[3]

Frédéric Faure. Prequantum chaos: Resonances of the prequantum cat map. Journal of Modern Dynamics, 2007, 1 (2) : 255-285. doi: 10.3934/jmd.2007.1.255

[4]

Jory Griffin, Jens Marklof. Limit theorems for skew translations. Journal of Modern Dynamics, 2014, 8 (2) : 177-189. doi: 10.3934/jmd.2014.8.177

[5]

Katsukuni Nakagawa. Compactness of transfer operators and spectral representation of Ruelle zeta functions for super-continuous functions. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6331-6350. doi: 10.3934/dcds.2020282

[6]

Eduardo Liz, Victor Tkachenko, Sergei Trofimchuk. Yorke and Wright 3/2-stability theorems from a unified point of view. Conference Publications, 2003, 2003 (Special) : 580-589. doi: 10.3934/proc.2003.2003.580

[7]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[8]

Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012

[9]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

[10]

Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123

[11]

Gershon Wolansky. Limit theorems for optimal mass transportation and applications to networks. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 365-374. doi: 10.3934/dcds.2011.30.365

[12]

Martin Fraas, David Krejčiřík, Yehuda Pinchover. On some strong ratio limit theorems for heat kernels. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 495-509. doi: 10.3934/dcds.2010.28.495

[13]

Alessandra Celletti, Sara Di Ruzza. Periodic and quasi--periodic orbits of the dissipative standard map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 151-171. doi: 10.3934/dcdsb.2011.16.151

[14]

Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Period doubling and reducibility in the quasi-periodically forced logistic map. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1507-1535. doi: 10.3934/dcdsb.2012.17.1507

[15]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[16]

Anat Amir. Sharpness of Zapolsky's inequality for quasi-states and Poisson brackets. Electronic Research Announcements, 2011, 18: 61-68. doi: 10.3934/era.2011.18.61

[17]

Jianhai Bao, Feng-Yu Wang, Chenggui Yuan. Limit theorems for additive functionals of path-dependent SDEs. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5173-5188. doi: 10.3934/dcds.2020224

[18]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[19]

Yves Derriennic. Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the "central limit theorem''. Discrete & Continuous Dynamical Systems, 2006, 15 (1) : 143-158. doi: 10.3934/dcds.2006.15.143

[20]

Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029

2020 Impact Factor: 0.848

Article outline

Figures and Tables

[Back to Top]