- Previous Article
- JMD Home
- This Volume
-
Next Article
The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces
Three problems solved by Sébastien Gouëzel
Sorbonne Université and CNRS, UMR 8001, LPSM, Case courrier 158, 4 Place Jussieu, F-75252, Paris Cedex 05, France |
We present three results of Sébastien Gouëzel's: the local limit theorem for random walks on hyperbolic groups, a multiplicative ergodic theorem for non-expansive mappings (joint work with Anders Karlsson), and the description of the essential spectrum of the Laplacian on $ SL(2,{\mathbb R}) $ orbits in the moduli space (joint work with Artur Avila).
References:
[1] |
J. F. Alves, C. Bonatti and M. Viana,
SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.
doi: 10.1007/s002220000057. |
[2] |
A. Avila and S. Gouëzel,
Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Ann. of Math. (2), 178 (2013), 385-442.
doi: 10.4007/annals.2013.178.2.1. |
[3] |
A. Avila, S. Gouëzel and J.-C. Yoccoz,
Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143-211.
doi: 10.1007/s10240-006-0001-5. |
[4] |
A. Ancona,
Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math. (2), 125 (1987), 495-536.
doi: 10.2307/1971409. |
[5] |
A. Ancona, Théorie du potentiel sur les graphes et les variétés, École d'été de Probabilités de Saint-Flour XVIII–-1988, Lecture Notes in Math., 1427, Springer, Berlin, 1990, 5–112.
doi: 10.1007/BFb0103041. |
[6] |
P. Bougerol,
Théorème central limite local sur certains groupes de Lie, Ann. Sci. École Norm. Sup. (4), 14 (1981), 403-432.
doi: 10.24033/asens.1412. |
[7] |
D. Dolgopyat,
The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces, J. Mod. Dyn., 16 (2020), 351-371.
doi: 10.3934/jmd.2020014. |
[8] |
A. Eskin and H. Masur,
Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, 21 (2001), 443-478.
doi: 10.1017/S0143385701001225. |
[9] |
A. Eskin and M. Mirzakhani,
Invariant and stationary measures for the SL (2, $\Bbb R$) action on moduli space, Publ. Math. Inst. Hautes Études Sci., 127 (2018), 95-324.
doi: 10.1007/s10240-018-0099-2. |
[10] |
G. Forni,
On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations, J. Mod. Dyn., 6 (2012), 139-182.
doi: 10.3934/jmd.2012.6.139. |
[11] |
S. Gouëzel,
Local limit theorem for symmetric random walks in Gromov-hyperbolic groups, J. Amer. Math. Soc., 27 (2014), 893-928.
doi: 10.1090/S0894-0347-2014-00788-8. |
[12] |
S. Gouëzel,
Martin boundary of random walks with unbounded jumps in hyperbolic groups, Ann. Probab., 43 (2015), 2374-2404.
doi: 10.1214/14-AOP938. |
[13] |
S. Gouëzel and A. Karlsson,
Subadditive and multiplicative ergodic theorems, J. Euro. Math. Soc. (JEMS), 22 (2020), 1893-1915.
doi: 10.4171/JEMS/958. |
[14] |
S. Gouëzel and S. P. Lalley,
Random walks on co-compact Fuchsian groups, Ann. Sci. Éc. Norm. Supér. (4), 46 (2013), 129-173.
doi: 10.24033/asens.2186. |
[15] |
S. Gouëzel and V. Shchur,
Corrigendum: A corrected quantitative version of the Morse Lemma, J. Funct. Anal., 277 (2019), 1258-1268.
doi: 10.1016/j.jfa.2019.02.021. |
[16] |
P. Gerl and W. Woess,
Local limits and harmonic functions for nonisotropic random walks on free groups, Probab. Theory Relat. Fields, 71 (1986), 341-355.
doi: 10.1007/BF01000210. |
[17] |
H. Hennion,
Sur un théorème spectral et son application aux noyaux lipschitziens, Proc. Amer. Math. Soc., 118 (1993), 627-634.
doi: 10.2307/2160348. |
[18] |
M. Izumi, S. Neshveyev and R. Okayasu,
The ratio set of the harmonic measure of a random walk on a hyperbolic group, Israel J. Math., 163 (2008), 285-316.
doi: 10.1007/s11856-008-0013-6. |
[19] |
V. A. Kaimanovich,
Lyapunov exponents, symmetric spaces and a multiplicative ergodic theorem for semisimple Lie groups, J. Soviet Math., 47 (1989), 2387-2398.
doi: 10.1007/BF01840421. |
[20] |
V. A. Kaimanovich,
Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds, Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 361-393.
|
[21] |
J. F. C. Kingman,
The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc. Ser. B, 30 (1968), 499-510.
doi: 10.1111/j.2517-6161.1968.tb00749.x. |
[22] |
A. Karlsson and G. A. Margulis,
A multiplicative ergodic theorem and nonpositively curved spaces, Comm. Math. Phys., 208 (1999), 107-123.
doi: 10.1007/s002200050750. |
[23] |
S. P. Lalley,
Finite range random walk on free groups and homogeneous trees, Ann. Probab., 21 (1993), 2087-2130.
doi: 10.1214/aop/1176989012. |
[24] |
C. Liverani,
On Contact Anosov flows, Ann. of Math. (2), 159 (2004), 1275-1312.
doi: 10.4007/annals.2004.159.1275. |
[25] |
V. I. Oseledec,
A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obsc., 19 (1968), 179-210.
|
[26] |
J. Parkinson,
Isotropic random walks on affine buildings, Ann. Inst. Fourier (Grenoble), 57 (2007), 379-419.
doi: 10.5802/aif.2262. |
[27] |
W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187–188 (1990), 268 pp. |
[28] |
M. Ratner,
The rate of mixing for geodesic and horocycle flows, Ergodic. Theory Dynam. Systems, 7 (1987), 267-288.
doi: 10.1017/S0143385700004004. |
show all references
References:
[1] |
J. F. Alves, C. Bonatti and M. Viana,
SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.
doi: 10.1007/s002220000057. |
[2] |
A. Avila and S. Gouëzel,
Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Ann. of Math. (2), 178 (2013), 385-442.
doi: 10.4007/annals.2013.178.2.1. |
[3] |
A. Avila, S. Gouëzel and J.-C. Yoccoz,
Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143-211.
doi: 10.1007/s10240-006-0001-5. |
[4] |
A. Ancona,
Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math. (2), 125 (1987), 495-536.
doi: 10.2307/1971409. |
[5] |
A. Ancona, Théorie du potentiel sur les graphes et les variétés, École d'été de Probabilités de Saint-Flour XVIII–-1988, Lecture Notes in Math., 1427, Springer, Berlin, 1990, 5–112.
doi: 10.1007/BFb0103041. |
[6] |
P. Bougerol,
Théorème central limite local sur certains groupes de Lie, Ann. Sci. École Norm. Sup. (4), 14 (1981), 403-432.
doi: 10.24033/asens.1412. |
[7] |
D. Dolgopyat,
The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces, J. Mod. Dyn., 16 (2020), 351-371.
doi: 10.3934/jmd.2020014. |
[8] |
A. Eskin and H. Masur,
Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, 21 (2001), 443-478.
doi: 10.1017/S0143385701001225. |
[9] |
A. Eskin and M. Mirzakhani,
Invariant and stationary measures for the SL (2, $\Bbb R$) action on moduli space, Publ. Math. Inst. Hautes Études Sci., 127 (2018), 95-324.
doi: 10.1007/s10240-018-0099-2. |
[10] |
G. Forni,
On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations, J. Mod. Dyn., 6 (2012), 139-182.
doi: 10.3934/jmd.2012.6.139. |
[11] |
S. Gouëzel,
Local limit theorem for symmetric random walks in Gromov-hyperbolic groups, J. Amer. Math. Soc., 27 (2014), 893-928.
doi: 10.1090/S0894-0347-2014-00788-8. |
[12] |
S. Gouëzel,
Martin boundary of random walks with unbounded jumps in hyperbolic groups, Ann. Probab., 43 (2015), 2374-2404.
doi: 10.1214/14-AOP938. |
[13] |
S. Gouëzel and A. Karlsson,
Subadditive and multiplicative ergodic theorems, J. Euro. Math. Soc. (JEMS), 22 (2020), 1893-1915.
doi: 10.4171/JEMS/958. |
[14] |
S. Gouëzel and S. P. Lalley,
Random walks on co-compact Fuchsian groups, Ann. Sci. Éc. Norm. Supér. (4), 46 (2013), 129-173.
doi: 10.24033/asens.2186. |
[15] |
S. Gouëzel and V. Shchur,
Corrigendum: A corrected quantitative version of the Morse Lemma, J. Funct. Anal., 277 (2019), 1258-1268.
doi: 10.1016/j.jfa.2019.02.021. |
[16] |
P. Gerl and W. Woess,
Local limits and harmonic functions for nonisotropic random walks on free groups, Probab. Theory Relat. Fields, 71 (1986), 341-355.
doi: 10.1007/BF01000210. |
[17] |
H. Hennion,
Sur un théorème spectral et son application aux noyaux lipschitziens, Proc. Amer. Math. Soc., 118 (1993), 627-634.
doi: 10.2307/2160348. |
[18] |
M. Izumi, S. Neshveyev and R. Okayasu,
The ratio set of the harmonic measure of a random walk on a hyperbolic group, Israel J. Math., 163 (2008), 285-316.
doi: 10.1007/s11856-008-0013-6. |
[19] |
V. A. Kaimanovich,
Lyapunov exponents, symmetric spaces and a multiplicative ergodic theorem for semisimple Lie groups, J. Soviet Math., 47 (1989), 2387-2398.
doi: 10.1007/BF01840421. |
[20] |
V. A. Kaimanovich,
Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds, Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 361-393.
|
[21] |
J. F. C. Kingman,
The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc. Ser. B, 30 (1968), 499-510.
doi: 10.1111/j.2517-6161.1968.tb00749.x. |
[22] |
A. Karlsson and G. A. Margulis,
A multiplicative ergodic theorem and nonpositively curved spaces, Comm. Math. Phys., 208 (1999), 107-123.
doi: 10.1007/s002200050750. |
[23] |
S. P. Lalley,
Finite range random walk on free groups and homogeneous trees, Ann. Probab., 21 (1993), 2087-2130.
doi: 10.1214/aop/1176989012. |
[24] |
C. Liverani,
On Contact Anosov flows, Ann. of Math. (2), 159 (2004), 1275-1312.
doi: 10.4007/annals.2004.159.1275. |
[25] |
V. I. Oseledec,
A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obsc., 19 (1968), 179-210.
|
[26] |
J. Parkinson,
Isotropic random walks on affine buildings, Ann. Inst. Fourier (Grenoble), 57 (2007), 379-419.
doi: 10.5802/aif.2262. |
[27] |
W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187–188 (1990), 268 pp. |
[28] |
M. Ratner,
The rate of mixing for geodesic and horocycle flows, Ergodic. Theory Dynam. Systems, 7 (1987), 267-288.
doi: 10.1017/S0143385700004004. |
[1] |
Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014 |
[2] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[3] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[4] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[5] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[6] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[7] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[8] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[9] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[10] |
Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240 |
[11] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[12] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[13] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[14] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[15] |
Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406 |
[16] |
Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169 |
[17] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
2019 Impact Factor: 0.465
Tools
Article outline
[Back to Top]