
-
Previous Article
Local Lyapunov spectrum rigidity of nilmanifold automorphisms
- JMD Home
- This Volume
-
Next Article
On mixing and sparse ergodic theorems
Dynamics of 2-interval piecewise affine maps and Hecke-Mahler series
Aix-Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille, 163 Avenue de Luminy, Case 907, 13288, Marseille Cédex 9, France |
Let $ f : [0,1)\rightarrow [0,1) $ be a $ 2 $-interval piecewise affine increasing map which is injective but not surjective. Such a map $ f $ has a rotation number and can be parametrized by three real numbers. We make fully explicit the dynamics of $ f $ thanks to two specific functions $ {\boldsymbol{\delta}} $ and $ \phi $ depending on these parameters whose definitions involve Hecke-Mahler series. As an application, we show that the rotation number of $ f $ is rational, whenever the three parameters are all algebraic numbers, extending thus the main result of [
References:
[1] |
W. W. Adams and J. L. Davison,
A remarkable class of continued fractions, Proc. Amer. Math. Soc., 65 (1977), 194-198.
doi: 10.1090/S0002-9939-1977-0441879-4. |
[2] |
P. E. Böhmer,
$\ddot{U}ber$ die Transzendenz gewisser dyadischer Br$\ddot{u}$che, Math. Ann., 96 (1927), 367-377.
doi: 10.1007/BF01209172. |
[3] |
M. D. Boshernitzan,
Dense orbits of rationals, Proc. Amer. Math. Soc., 117 (1993), 1201-1203.
doi: 10.1090/S0002-9939-1993-1134622-6. |
[4] |
J. P. Bowman and S. Sanderson,
Angels' staircases, Sturmian sequences, and trajectories on homothety surfaces, J. Mod. Dyn., 16 (2020), 109-153.
doi: 10.3934/jmd.2020005. |
[5] |
J. M. Borwein and P. B. Borwein,
On the generating function of the integer part: $[ n \alpha + \gamma]$, J. Number Theory, 43 (1993), 293-318.
doi: 10.1006/jnth.1993.1023. |
[6] |
J. Brémont,
Dynamics of injective quasi-contractions, Ergodic. Theory Dynam. Systems, 26 (2006), 19-44.
doi: 10.1017/S0143385705000386. |
[7] |
Y. Bugeaud,
Dynamique de certaines applications contractantes, linéaires par morceaux, sur $[0, 1)$, C. R. Acad. Sci. Paris Sér I Math., 317 (1993), 575-578.
|
[8] |
Y. Bugeaud and J.-P. Conze,
Calcul de la dynamique de transformations linéaires contractantes mod 1 et arbre de Farey, Acta Arith., 88 (1999), 201-218.
doi: 10.4064/aa-88-3-201-218. |
[9] |
R. Coutinho, Dinâmica simbólica linear, Ph.D Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1999. |
[10] |
L. V. Danilov,
Certain classes of transcendental numbers, Math. Zametki, 12 (1972), 149-154.
|
[11] |
E. J. Ding and P. C. Hemmer,
Exact treatment of mode locking for a piecewise linear map, J. Statist. Phys., 46 (1987), 99-110.
doi: 10.1007/BF01010333. |
[12] |
O. Feely and L. O. Chua,
The effect of integrator leak in $\Sigma-\Delta$ modulation, IEEE Transactions on Circuits and Systems, 38 (1991), 1293-1305.
doi: 10.1109/31.99158. |
[13] |
M. Hata, Neurons–A Mathematical Ignition, Series on Number Theory and its Applications, 9, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. |
[14] |
S. Janson and A. Öberg,
A piecewise contractive dynamical system and Phragmén's election method, Bull. Soc. Math. France, 147 (2019), 395-441.
doi: 10.24033/bsmf.2787. |
[15] |
T. Komatsu,
A certain power series and the inhomogeneous continued fraction expansions, J. Number Theory, 59 (1996), 291-312.
doi: 10.1006/jnth.1996.0099. |
[16] |
M. Laurent and A. Nogueira,
Rotation number of contracted rotations, J. Mod. Dyn., 12 (2018), 175-191.
doi: 10.3934/jmd.2018007. |
[17] |
J. H. Loxton and A. J. van der Poorten,
Arithmetic properties of certain functions in several variables. Ⅲ, Bull. Austral. Math. Soc., 16 (1977), 15-47.
doi: 10.1017/S0004972700022978. |
[18] |
J. H. Loxton and A. J. van der Poorten, Transcendence and algebraic independence by a method of Mahler, in Transcendence Theory: Advances and Applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976), Academic Press, London, 1977,211–226. |
[19] |
J. Nagumo and S. Sato,
On a response characteristic of a mathematical neuron model, Kybernetik, 10 (1972), 155-164.
doi: 10.1007/BF00290514. |
[20] |
K. Nishioka, Mahler Functions and Transcendence, Springer Lecture Notes in Mathematics, 1631, Springer-Verlag, Berlin, 1996.
doi: 10.1007/BFb0093672. |
[21] |
K. Nishioka, I. Shiokawa and J. Tamura,
Arithmetical properties of a certain power series, J. Number Theory, 42 (1992), 61-87.
doi: 10.1016/0022-314X(92)90109-3. |
[22] |
A. Nogueira and B. Pires,
Dynamics of piecewise contractions of the interval, Ergodic Theory Dynam. Systems, 35 (2015), 2198-2215.
doi: 10.1017/etds.2014.16. |
[23] |
A. Nogueira, B. Pires and R. A. Rosales,
Topological dynamics of piecewise $\lambda$-affine maps, Ergodic Theory Dynam. Systems, 38 (2018), 1876-1893.
doi: 10.1017/etds.2016.104. |
[24] |
F. Rhodes and C. L. Thompson,
Rotation numbers for monotone functions on the circle, J. London Math. Soc. (2), 34 (1986), 360-368.
doi: 10.1112/jlms/s2-34.2.360. |
[25] |
F. Rhodes and C. L. Thompson,
Topologies and rotation numbers for families of monotone functions on the circle, J. London Math. Soc. (2), 43 (1991), 156-170.
doi: 10.1112/jlms/s2-43.1.156. |
show all references
References:
[1] |
W. W. Adams and J. L. Davison,
A remarkable class of continued fractions, Proc. Amer. Math. Soc., 65 (1977), 194-198.
doi: 10.1090/S0002-9939-1977-0441879-4. |
[2] |
P. E. Böhmer,
$\ddot{U}ber$ die Transzendenz gewisser dyadischer Br$\ddot{u}$che, Math. Ann., 96 (1927), 367-377.
doi: 10.1007/BF01209172. |
[3] |
M. D. Boshernitzan,
Dense orbits of rationals, Proc. Amer. Math. Soc., 117 (1993), 1201-1203.
doi: 10.1090/S0002-9939-1993-1134622-6. |
[4] |
J. P. Bowman and S. Sanderson,
Angels' staircases, Sturmian sequences, and trajectories on homothety surfaces, J. Mod. Dyn., 16 (2020), 109-153.
doi: 10.3934/jmd.2020005. |
[5] |
J. M. Borwein and P. B. Borwein,
On the generating function of the integer part: $[ n \alpha + \gamma]$, J. Number Theory, 43 (1993), 293-318.
doi: 10.1006/jnth.1993.1023. |
[6] |
J. Brémont,
Dynamics of injective quasi-contractions, Ergodic. Theory Dynam. Systems, 26 (2006), 19-44.
doi: 10.1017/S0143385705000386. |
[7] |
Y. Bugeaud,
Dynamique de certaines applications contractantes, linéaires par morceaux, sur $[0, 1)$, C. R. Acad. Sci. Paris Sér I Math., 317 (1993), 575-578.
|
[8] |
Y. Bugeaud and J.-P. Conze,
Calcul de la dynamique de transformations linéaires contractantes mod 1 et arbre de Farey, Acta Arith., 88 (1999), 201-218.
doi: 10.4064/aa-88-3-201-218. |
[9] |
R. Coutinho, Dinâmica simbólica linear, Ph.D Thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1999. |
[10] |
L. V. Danilov,
Certain classes of transcendental numbers, Math. Zametki, 12 (1972), 149-154.
|
[11] |
E. J. Ding and P. C. Hemmer,
Exact treatment of mode locking for a piecewise linear map, J. Statist. Phys., 46 (1987), 99-110.
doi: 10.1007/BF01010333. |
[12] |
O. Feely and L. O. Chua,
The effect of integrator leak in $\Sigma-\Delta$ modulation, IEEE Transactions on Circuits and Systems, 38 (1991), 1293-1305.
doi: 10.1109/31.99158. |
[13] |
M. Hata, Neurons–A Mathematical Ignition, Series on Number Theory and its Applications, 9, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. |
[14] |
S. Janson and A. Öberg,
A piecewise contractive dynamical system and Phragmén's election method, Bull. Soc. Math. France, 147 (2019), 395-441.
doi: 10.24033/bsmf.2787. |
[15] |
T. Komatsu,
A certain power series and the inhomogeneous continued fraction expansions, J. Number Theory, 59 (1996), 291-312.
doi: 10.1006/jnth.1996.0099. |
[16] |
M. Laurent and A. Nogueira,
Rotation number of contracted rotations, J. Mod. Dyn., 12 (2018), 175-191.
doi: 10.3934/jmd.2018007. |
[17] |
J. H. Loxton and A. J. van der Poorten,
Arithmetic properties of certain functions in several variables. Ⅲ, Bull. Austral. Math. Soc., 16 (1977), 15-47.
doi: 10.1017/S0004972700022978. |
[18] |
J. H. Loxton and A. J. van der Poorten, Transcendence and algebraic independence by a method of Mahler, in Transcendence Theory: Advances and Applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976), Academic Press, London, 1977,211–226. |
[19] |
J. Nagumo and S. Sato,
On a response characteristic of a mathematical neuron model, Kybernetik, 10 (1972), 155-164.
doi: 10.1007/BF00290514. |
[20] |
K. Nishioka, Mahler Functions and Transcendence, Springer Lecture Notes in Mathematics, 1631, Springer-Verlag, Berlin, 1996.
doi: 10.1007/BFb0093672. |
[21] |
K. Nishioka, I. Shiokawa and J. Tamura,
Arithmetical properties of a certain power series, J. Number Theory, 42 (1992), 61-87.
doi: 10.1016/0022-314X(92)90109-3. |
[22] |
A. Nogueira and B. Pires,
Dynamics of piecewise contractions of the interval, Ergodic Theory Dynam. Systems, 35 (2015), 2198-2215.
doi: 10.1017/etds.2014.16. |
[23] |
A. Nogueira, B. Pires and R. A. Rosales,
Topological dynamics of piecewise $\lambda$-affine maps, Ergodic Theory Dynam. Systems, 38 (2018), 1876-1893.
doi: 10.1017/etds.2016.104. |
[24] |
F. Rhodes and C. L. Thompson,
Rotation numbers for monotone functions on the circle, J. London Math. Soc. (2), 34 (1986), 360-368.
doi: 10.1112/jlms/s2-34.2.360. |
[25] |
F. Rhodes and C. L. Thompson,
Topologies and rotation numbers for families of monotone functions on the circle, J. London Math. Soc. (2), 43 (1991), 156-170.
doi: 10.1112/jlms/s2-43.1.156. |




[1] |
Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753 |
[2] |
Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for two-dimensional piecewise-affine maps. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 739-767. doi: 10.3934/dcdsb.2011.15.739 |
[3] |
Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711 |
[4] |
Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169 |
[5] |
Jon Chaika, David Constantine. A quantitative shrinking target result on Sturmian sequences for rotations. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5189-5204. doi: 10.3934/dcds.2018229 |
[6] |
Joshua P. Bowman, Slade Sanderson. Angels' staircases, Sturmian sequences, and trajectories on homothety surfaces. Journal of Modern Dynamics, 2020, 16: 109-153. doi: 10.3934/jmd.2020005 |
[7] |
Arek Goetz. Dynamics of a piecewise rotation. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 593-608. doi: 10.3934/dcds.1998.4.593 |
[8] |
Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071 |
[9] |
Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 81-91. doi: 10.3934/jcd.2016004 |
[10] |
Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial and Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737 |
[11] |
Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617 |
[12] |
Abdelhamid Adouani, Habib Marzougui. Computation of rotation numbers for a class of PL-circle homeomorphisms. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3399-3419. doi: 10.3934/dcds.2012.32.3399 |
[13] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2117-2138. doi: 10.3934/cpaa.2021060 |
[14] |
C. Kopf. Symbol sequences and entropy for piecewise monotone transformations with discontinuities. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 299-304. doi: 10.3934/dcds.2000.6.299 |
[15] |
Héctor E. Lomelí. Heteroclinic orbits and rotation sets for twist maps. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 343-354. doi: 10.3934/dcds.2006.14.343 |
[16] |
Tiantian Wu, Xiao-Song Yang. A new class of 3-dimensional piecewise affine systems with homoclinic orbits. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5119-5129. doi: 10.3934/dcds.2016022 |
[17] |
Sigurdur F. Hafstein, Christopher M. Kellett, Huijuan Li. Computing continuous and piecewise affine lyapunov functions for nonlinear systems. Journal of Computational Dynamics, 2015, 2 (2) : 227-246. doi: 10.3934/jcd.2015004 |
[18] |
Claudio Bonanno, Carlo Carminati, Stefano Isola, Giulio Tiozzo. Dynamics of continued fractions and kneading sequences of unimodal maps. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1313-1332. doi: 10.3934/dcds.2013.33.1313 |
[19] |
Viviane Baladi, Sébastien Gouëzel. Banach spaces for piecewise cone-hyperbolic maps. Journal of Modern Dynamics, 2010, 4 (1) : 91-137. doi: 10.3934/jmd.2010.4.91 |
[20] |
Peter Ashwin, Xin-Chu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1533-1548. doi: 10.3934/dcds.2003.9.1533 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]